Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Clini...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Clinical Investigation
Article . 2011 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Loss of Gata5 in mice leads to bicuspid aortic valve

Authors: Brigitte, Laforest; Gregor, Andelfinger; Mona, Nemer;

Loss of Gata5 in mice leads to bicuspid aortic valve

Abstract

Bicuspid aortic valve (BAV), the leading congenital heart disease, occurs in 1%-2% of the population. Genetic studies suggest that BAV is an autosomal-dominant disease with reduced penetrance. However, only 1 gene, NOTCH1, has been linked to cases of BAV. Here, we show that targeted deletion of Gata5 in mice leads to hypoplastic hearts and partially penetrant BAV formation. Endocardial cell-specific inactivation of Gata5 led to BAV, similar to that observed in Gata5-/- mice. In all cases, the observed BAVs resulted from fusion of the right-coronary and noncoronary leaflets, the subtype associated with the more severe valve dysfunction in humans. Neither endocardial cell proliferation nor cushion formation was altered in the absence of Gata5. Rather, defective endocardial cell differentiation, resulting from the deregulation of several components of the Notch pathway and other important endocardial cell regulators, may be the underlying mechanism of disease. The results unravel a critical cell-autonomous role for endocardial Gata5 in aortic valve formation and identify GATA5 as a potential gene responsible for congenital heart disease in humans. Mice with mutated Gata5 alleles represent unique models to dissect the mechanisms underlying degenerative aortic valve disease and to develop much-needed preventive and therapeutic interventions.

Related Organizations
Keywords

Heart Defects, Congenital, Mice, Knockout, Receptors, Notch, GATA5 Transcription Factor, Myocardium, Gene Expression Regulation, Developmental, Heart, Embryo, Mammalian, Mice, Aortic Valve, Gene Targeting, Morphogenesis, Animals, Humans, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    156
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
156
Top 10%
Top 10%
Top 1%
gold