Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Pharmacolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Pharmacology
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

The X-Ray Crystal Structure of the Human Mono-Oxygenase Cytochrome P450 3A5-Ritonavir Complex Reveals Active Site Differences between P450s 3A4 and 3A5

Authors: Mei-Hui, Hsu; Uzen, Savas; Eric F, Johnson;

The X-Ray Crystal Structure of the Human Mono-Oxygenase Cytochrome P450 3A5-Ritonavir Complex Reveals Active Site Differences between P450s 3A4 and 3A5

Abstract

The contributions of cytochrome P450 3A5 to the metabolic clearance of marketed drugs is unclear, but its probable role is to augment the metabolism of several drugs that are largely cleared by P450 3A4. Selective metabolism by 3A4 is often a concern in drug development owing to potential drug-drug interactions and the variability of 3A4 and 3A5 expression. The contribution of P450 3A5 to these clearance pathways varies between individuals owing to genetic differences and similarities and differences in the metabolic properties of 3A5 compared with 3A4. To better understand the structural differences between P450s 3A4 and 3A5, the structure of 3A5 complexed with ritonavir was determined by X-ray crystallography to a limiting resolution of 2.91 Å. The secondary and tertiary structures of 3A5 and 3A4 are similar, but the architectures of their active sites differ. The 3A5 active site is taller and narrower than that of 3A4. As a result, ritonavir adopts a distinctly different conformation to fit into the cavity of 3A5 than seen for 3A4. These structural changes reflect amino acid differences that alter the conformation of the helix F through helix G region in the upper portion of the cavity and ionic interactions between residues in the beta-sheet domain that reduce the width of the cavity. The structural differences exhibited by 3A4 and 3A5 suggest that the overlap of catalytic activities may reflect molecular flexibility that determines how alternative conformers fit into the different active site architectures of the two enzymes.

Related Organizations
Keywords

Binding Sites, Ritonavir, Cytochrome P-450 CYP3A, Cytochrome P-450 CYP3A Inhibitors, Humans, Crystallography, X-Ray, Protein Structure, Secondary, Protein Structure, Tertiary

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
bronze