Crystal structure and functional analysis of MiD49, a receptor for the mitochondrial fission protein Drp1
Crystal structure and functional analysis of MiD49, a receptor for the mitochondrial fission protein Drp1
AbstractMitochondrial fission requires recruitment of dynamin‐related protein 1 (Drp1) to the mitochondrial surface, where assembly leads to activation of its GTP‐dependent scission function. MiD49 and MiD51 are two receptors on the mitochondrial outer membrane that can recruit Drp1 to facilitate mitochondrial fission. Structural studies indicated that MiD51 has a variant nucleotidyl transferase fold that binds an ADP co‐factor essential for activation of Drp1 function. MiD49 shares sequence homology with MiD51 and regulates Drp1 function. However, it is unknown if MiD49 binds an analogous co‐factor. Because MiD49 does not readily crystallize, we used structural predictions and biochemical screening to identify a surface entropy reduction mutant that facilitated crystallization. Using molecular replacement, we determined the atomic structure of MiD49 to 2.4 Å. Like MiD51, MiD49 contains a nucleotidyl transferase domain; however, the electron density provides no evidence for a small‐molecule ligand. Structural changes in the putative nucleotide‐binding pocket make MiD49 incompatible with an extended ligand like ADP, and critical nucleotide‐binding residues found in MiD51 are not conserved. MiD49 contains a surface loop that physically interacts with Drp1 and is necessary for Drp1 recruitment to the mitochondrial surface. Our results suggest a structural basis for the differential regulation of MiD51‐ versus MiD49‐mediated fission.
- California Institute of Technology United States
Dynamins, Models, Molecular, mitochondrial fission, Molecular Sequence Data, dynamin-related protein, 500, 540, Peptide Elongation Factors, mitochondrial dynamics, Mitochondrial Proteins, Mice, Animals, Humans, Amino Acid Sequence, Sequence Alignment, Cells, Cultured, MiD49
Dynamins, Models, Molecular, mitochondrial fission, Molecular Sequence Data, dynamin-related protein, 500, 540, Peptide Elongation Factors, mitochondrial dynamics, Mitochondrial Proteins, Mice, Animals, Humans, Amino Acid Sequence, Sequence Alignment, Cells, Cultured, MiD49
4 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).51 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
