Antitumorigenic Effect of Wnt 7a and Fzd 9 in Non-small Cell Lung Cancer Cells Is Mediated through ERK-5-dependent Activation of Peroxisome Proliferator-activated Receptor γ
pmid: 16835228
Antitumorigenic Effect of Wnt 7a and Fzd 9 in Non-small Cell Lung Cancer Cells Is Mediated through ERK-5-dependent Activation of Peroxisome Proliferator-activated Receptor γ
The Wnt pathway is critical for normal development, and mutation of specific components is seen in carcinomas of diverse origins. The role of this pathway in lung tumorigenesis has not been clearly established. Recent studies from our laboratory indicate that combined expression of the combination of Wnt 7a and Frizzled 9 (Fzd 9) in Non-small Cell Lung Cancer (NSCLC) cell lines inhibits transformed growth. We have also shown that increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma) inhibits transformed growth of NSCLC and promotes epithelial differentiation of these cells. The goal of this study was to determine whether the effects of Wnt 7a/Fzd 9 were mediated through PPARgamma. We found that Wnt 7a and Fzd 9 expression led to increased PPARgamma activity. This effect was not mediated by altered expression of the protein. Wnt 7a and Fzd 9 expression resulted in activation of ERK5, which was required for PPARgamma activation in NSCLC. SR 202, a known PPARgamma inhibitor, blocked the increase in PPARgamma activity and restored anchorage-independent growth in NSCLC expressing Wnt 7a and Fzd 9. SR 202 also reversed the increase in E-cadherin expression mediated by Wnt 7a and Fzd 9. These data suggest that ERK5-dependent activation of PPARgamma represents a major effector pathway mediating the anti-tumorigenic effects of Wnt 7a and Fzd 9 in NSCLC.
- University of Colorado Health United States
- United States Department of Veterans Affairs United States
- University of Colorado Anschutz Medical Campus United States
- University of Colorado Cancer Center United States
Lung Neoplasms, Gene Transfer Techniques, Antineoplastic Agents, Cadherins, Frizzled Receptors, Receptors, G-Protein-Coupled, Receptors, Neurotransmitter, Gene Expression Regulation, Neoplastic, PPAR gamma, Wnt Proteins, Organophosphorus Compounds, Carcinoma, Non-Small-Cell Lung, Cell Line, Tumor, Proto-Oncogene Proteins, Humans, Mitogen-Activated Protein Kinase 7
Lung Neoplasms, Gene Transfer Techniques, Antineoplastic Agents, Cadherins, Frizzled Receptors, Receptors, G-Protein-Coupled, Receptors, Neurotransmitter, Gene Expression Regulation, Neoplastic, PPAR gamma, Wnt Proteins, Organophosphorus Compounds, Carcinoma, Non-Small-Cell Lung, Cell Line, Tumor, Proto-Oncogene Proteins, Humans, Mitogen-Activated Protein Kinase 7
16 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).106 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
