Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2008
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2008 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Myt1 and Ngn3 form a feed-forward expression loop to promote endocrine islet cell differentiation

Authors: Yuval Dor; Jacob Hecksher-Sørensen; Guoqiang Gu; Sui Wang; Palle Serup; Yanwen Xu; Louise C. Rosenberg; +1 Authors

Myt1 and Ngn3 form a feed-forward expression loop to promote endocrine islet cell differentiation

Abstract

High levels of Ngn3 expression in pancreatic progenitor cells are both necessary and sufficient to initiate endocrine differentiation. While it is clear that the Notch-Hes1-mediated signals control the number of Ngn3-expressing cells in the developing pancreas, it is not known what factors control the level of Ngn3 expression in individual pancreatic cells. Here we report that Myt1b and Ngn3 form a feed-forward expression loop that regulates endocrine differentiation. Myt1b induces glucagon expression by potentiating Ngn3 transcription in pancreatic progenitors. Vice versa, Ngn3 protein production induces the expression of Myt1. Furthermore, pancreatic Myt1 expression largely, but not totally, relies on Ngn3 activity. Surprisingly, a portion of Myt1 expressing pancreatic cells express glucagon and other alpha cell markers in Ngn3 nullizygous mutant animals. These results demonstrate that Myt1b and Ngn3 positively regulate each other's expression to promote endocrine differentiation. In addition, the data uncover an unexpected Ngn3 expression-independent endocrine cell production pathway, which further bolsters the notion that the seemingly equivalent endocrine cells of each type, as judged by hormone and transcription factor expression, are heterogeneous in their origin.

Keywords

Myt1, Endocrine progenitor, Fluorescent Antibody Technique, Cell Differentiation, Nerve Tissue Proteins, Cell Biology, Chick Embryo, Immunohistochemistry, DNA-Binding Proteins, Islets of Langerhans, Mice, Redundancy, Gene Expression Regulation, Basic Helix-Loop-Helix Transcription Factors, Animals, Endocrine islet, Compensation, Pancreas, Molecular Biology, Developmental Biology, DNA Primers, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 10%
Top 10%
Top 10%
hybrid