Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Endogenous Galectin-3 Is Localized in Membrane Lipid Rafts and Regulates Migration of Dendritic Cells

Authors: Hsu, Daniel K.; Chernyavsky, Alexander I.; Chen, Huan-Yuan; Yu, Lan; Grando, Sergei A.; Liu, Fu-Tong;

Endogenous Galectin-3 Is Localized in Membrane Lipid Rafts and Regulates Migration of Dendritic Cells

Abstract

This study reveals a function of endogenous galectin-3, an animal lectin recognizing beta-galactosides, in regulating dendritic cell motility both in vitro and in vivo, which to our knowledge is unreported. First, galectin-3-deficient (gal3(-/-)) bone marrow-derived dendritic cells exhibited defective chemotaxis compared to gal3(+/+) cells. Second, cutaneous dendritic cells in gal3(-/-) mice displayed reduced migration to draining lymph nodes upon hapten stimulation compared to gal3(+/+) mice. Moreover, gal3(-/-) mice were impaired in the development of contact hypersensitivity relative to gal3(+/+) mice in response to a hapten, a process in which dendritic cell trafficking to lymph nodes is critical. In addition, defective signaling was detected in gal3(-/-) cells upon chemokine receptor activation. By immunofluorescence microscopy, we observed that galectin-3 is localized in membrane ruffles and lamellipodia in stimulated dendritic cells and macrophages. Furthermore, galectin-3 was enriched in lipid raft domains under these conditions. Finally, we determined that ruffles on gal3(-/-) cells contained structures with lower complexity compared to gal3(+/+) cells. In view of the participation of membrane ruffles in signal transduction and cell motility, we conclude that galectin-3 regulates cell migration by functioning at these structures.

Keywords

Chemotaxis, Galectin 3, Macrophages, Cell Membrane, Bone Marrow Cells, Cell Biology, Dermatology, Dendritic Cells, Biochemistry, Models, Biological, Cell Line, Mice, Membrane Microdomains, Microscopy, Fluorescence, Animals, Lymph Nodes, Chemokines, Molecular Biology, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 10%
Top 10%
Top 1%
hybrid