Involvement of a spinal brain-derived neurotrophic factor/full-length TrkB pathway in the development of nerve injury-induced thermal hyperalgesia in mice
pmid: 12470870
Involvement of a spinal brain-derived neurotrophic factor/full-length TrkB pathway in the development of nerve injury-induced thermal hyperalgesia in mice
Partial sciatic nerve ligation in mice caused a marked and persistent decrease in the latency of paw withdrawal from a thermal stimulus only on the ipsilateral side. This thermal hyperalgesia was abolished by repeated intrathecal pretreatment with a specific antibody to brain-derived neurotrophic factor (BDNF), but not neurotrophin-4, just before and after the nerve ligation. These results provide direct evidence that BDNF within the spinal cord may contribute to the development of thermal hyperalgesia caused by nerve injury in mice. We previously reported that protein level of full-length TrkB, which contains the cytoplasmic protein tyrosine kinase domain, were clearly increased on the ipsilateral side of spinal cord membranes obtained from sciatic nerve-ligated mice. In the present study, we further demonstrated that the increased in the protein level of full-length TrkB is completely reversed by concomitant intrathecal injection of BDNF antibody. Furthermore, thermal hyperalgesia induced by nerve ligation was completely suppressed by repeated intrathecal injection of a specific antibody to full-length TrkB and an inhibitor of the protein tyrosine kinase activity for the neurotrophin receptor, K-252a. However, repeated intrathecal injection of a specific antibody to truncated TrkB, which lacks the cytoplasmic protein tyrosine kinase domain, failed to reverse thermal hyperalgesia observed in nerve-ligated mice. These findings suggest the possibility that the binding of BDNF to full-length TrkB and subsequent its activation may play a critical role in the development of neuropathic pain-like thermal hyperalgesia induced by nerve injury in mice.
- Hoshi University Japan
Male, Mice, Inbred ICR, Hot Temperature, Brain-Derived Neurotrophic Factor, Mice, Spinal Cord, Hyperalgesia, Animals, Receptor, trkB, Sciatic Neuropathy, Pain Measurement, Signal Transduction
Male, Mice, Inbred ICR, Hot Temperature, Brain-Derived Neurotrophic Factor, Mice, Spinal Cord, Hyperalgesia, Animals, Receptor, trkB, Sciatic Neuropathy, Pain Measurement, Signal Transduction
13 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).95 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
