Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Chemistryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Chemistry
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Chemistry
Article . 2020
Data sources: DOAJ
versions View all 4 versions

Bioactive fluorenes. Part III: 2,7-dichloro-9H-fluorene-based thiazolidinone and azetidinone analogues as anticancer and antimicrobial against multidrug resistant strains agents

Authors: Essam M. Hussein; Reem I. Alsantali; Moataz Morad; Rami J. Obaid; Hatem M. Altass; Ali Sayqal; Mohamed A. S. Abourehab; +3 Authors

Bioactive fluorenes. Part III: 2,7-dichloro-9H-fluorene-based thiazolidinone and azetidinone analogues as anticancer and antimicrobial against multidrug resistant strains agents

Abstract

Abstract Background Thiazoles, thiazolidinones and azetidinones are highly ranked amongst natural and synthetic heterocyclic derivatives due to their great pharmaceutical potential. Results New thiazolidinone and azetidinone class of bioactive agents based on 4-(2,7-dichloro-9H-fluoren-4-yl)thiazole moiety have been successfully synthesized. 4-(2,7-dichloro-9H-fluoren-4-yl)thiazol-2-amine was synthesized and allowed to react with various aryl/heteroaryl aldehydes to afford the corresponding Schiff base intermediates. The target thiazolidinone and azetidinone analogues have derived from Schiff bases by their reactions with thioglycolic acid and chloroacetyl chloride, respectively. The newly synthesized compounds were then evaluated for their antimicrobial activity against some multidrug resistant strains and examined for cytotoxic activity against normal lung fibroblast (WI-38), human lung carcinoma (A549), and human breast carcinoma (MDA-MB-231) cell lines to develop a novel class of fluorene-based bioactive agents. The mode of action and the binding interaction of the synthesized compound with the active sites of dihydrofolate reductase enzyme were well identified by fluorescence-activated cell sorting (FACS) analysis and molecular docking study. Conclusion Some of the synthesized compounds showed remarkable activity against A-549 and MDA-MB-231 when compared to Taxol, which was used as a reference drug. 2,7-dichloro-9H-fluorene-based azetidinones are more efficient as antimicrobial and anticancer agents compared to dichloro-9H-fluorene-based thiazolidinones derivatives.

Keywords

Anti-cancer, Thiazolidinones, Fluorene, Pharmacophores, Chemistry, Antimicrobial, QD1-999, Azetidinones, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Top 10%
Green
gold
Related to Research communities
Cancer Research