Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1104/pp.112...
Article . 2012 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://www.plantphysiol.org/co...
Article
License: CC BY
Data sources: UnpayWall
versions View all 2 versions

New Insights into Roles of Cell Wall Invertase in Early Seed Development Revealed by Comprehensive Spatial and Temporal Expression Patterns of GhCWIN1 in Cotton

Authors: Wang, Lu; Ruan, Yong-Ling;

New Insights into Roles of Cell Wall Invertase in Early Seed Development Revealed by Comprehensive Spatial and Temporal Expression Patterns of GhCWIN1 in Cotton

Abstract

Abstract Despite substantial evidence on the essential roles of cell wall invertase (CWIN) in seed filling, it remains largely unknown how CWIN exerts its regulation early in seed development, a critical stage that sets yield potential. To fill this knowledge gap, we systematically examined the spatial and temporal expression patterns of a major CWIN gene, GhCWIN1, in cotton (Gossypium hirsutum) seeds from prefertilization to prestorage phase. GhCWIN1 messenger RNA was abundant at the innermost seed coat cell layer at 5 d after anthesis but became undetectable at 10 d after anthesis, at the onset of its differentiation into transfer cells characterized by wall ingrowths, suggesting that CWIN may negatively regulate transfer cell differentiation. Within the filial tissues, GhCWIN1 transcript was detected in endosperm cells undergoing nuclear division but not in those cells at the cellularization stage, with similar results observed in Arabidopsis (Arabidopsis thaliana) endosperm for CWIN, AtCWIN4. These findings indicate a function of CWIN in nuclear division but not cell wall biosynthesis in endosperm, contrasting to the role proposed for sucrose synthase (Sus). Further analyses revealed a preferential expression pattern of GhCWIN1 and AtCWIN4 in the provascular region of the torpedo embryos in cotton and Arabidopsis seed, respectively, indicating a role of CWIN in vascular initiation. Together, these novel findings provide insights into the roles of CWIN in regulating early seed development spatially and temporally. By comparing with previous studies on Sus expression and in conjunction with the expression of other related genes, we propose models of CWIN- and Sus-mediated regulation of early seed development.

Related Organizations
Keywords

DNA, Complementary, Time Factors, Arabidopsis, cell wall invertase, Genes, Plant, cotton, Giant Cells, Gene Expression Regulation, Enzymologic, Cell Wall, Gene Expression Regulation, Plant, RNA, Messenger, seed filling, Cloning, Molecular, Plant Proteins, 580, Gossypium, Sequence Analysis, RNA, Cell Differentiation, Enzyme Activation, Glucosyltransferases, RNA, Plant, Seeds, Cell Nucleus Division, Plant Vascular Bundle, seed development

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 1%
Top 10%
Top 10%
hybrid