Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2000 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

MIP-T3, a Novel Protein Linking Tumor Necrosis Factor Receptor-associated Factor 3 to the Microtubule Network

Authors: L, Ling; D V, Goeddel;

MIP-T3, a Novel Protein Linking Tumor Necrosis Factor Receptor-associated Factor 3 to the Microtubule Network

Abstract

In this study, we report the identification of a novel tumor necrosis factor receptor-associated factor 3 (TRAF3)-interacting protein designated MIP-T3. MIP-T3 is a 83-kDa protein with no significant homology to known mammalian proteins. MIP-T3 mRNA and TRAF3 mRNA are ubiquitously expressed, and TRAF3 is the only TRAF protein to interact with MIP-T3. The MIP-T3-TRAF3 interaction requires the coiled-coil TRAF-N domain of TRAF3. To our knowledge, this is the first case of a TRAF-binding protein that interacts with a single member of the TRAF family specifically through a TRAF-N coiled-coil domain. MIP-T3 binds to Taxol-stabilized microtubules and to tubulin in vitro, and MIP-T3 recruits TRAF3 to microtubules when both proteins are overexpressed in HeLa cells. In a 293 cell line stably expressing CD40, TRAF3 is released from the TRAF3.MIP-T3 complex and recruited to the CD40 receptor upon CD40 ligand stimulation. MIP-T3 may provide a novel mechanism in sequestering TRAF3 to the cytoskeletal network.

Keywords

Binding Sites, Membrane Glycoproteins, Paclitaxel, CD40 Ligand, Molecular Sequence Data, Proteins, Receptors, Cell Surface, Microtubules, Receptors, Tumor Necrosis Factor, Protein Structure, Tertiary, Mutation, Humans, Amino Acid Sequence, CD40 Antigens, Microtubule-Associated Proteins, Cytoskeleton, Gene Library, HeLa Cells, Protein Binding, Sequence Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
gold