Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochimica et Biophy...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Targeting chromatin remodelers: Signals and search mechanisms

Authors: Fabian, Erdel; Jana, Krug; Gernot, Längst; Karsten, Rippe;

Targeting chromatin remodelers: Signals and search mechanisms

Abstract

Chromatin remodeling complexes are ATP-driven molecular machines that change chromatin structure by translocating nucleosomes along the DNA, evicting nucleosomes, or changing the nucleosomal histone composition. They are highly abundant in the cell and numerous different complexes exist that display distinct activity patterns. Here we review chromatin-associated signals that are recognized by remodelers. It is discussed how these regulate the remodeling reaction via changing the nucleosome substrate/product binding affinity or the catalytic translocation rate. Finally, we address the question of how chromatin remodelers operate in the cell nucleus to find specifically marked nucleosome substrates via a diffusion driven target location mechanism, and estimate the search times of this process. This article is part of a Special Issue entitled:Snf2/Swi2 ATPase structure and function.

Related Organizations
Keywords

Adenosine Triphosphatases, DNA, DNA Methylation, Chromatin Assembly and Disassembly, Translocation, Genetic, Nucleosomes, DNA-Binding Proteins, Histones, Adenosine Triphosphate, Protein Binding, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%