Powered by OpenAIRE graph

Overexpression ofTRPC1enhances pulmonary vasoconstriction induced by capacitative Ca2+entry

Authors: Naomi, Kunichika; Ying, Yu; Carmelle V, Remillard; Oleksandr, Platoshyn; Shen, Zhang; Jason X-J, Yuan;

Overexpression ofTRPC1enhances pulmonary vasoconstriction induced by capacitative Ca2+entry

Abstract

Transient receptor potential (TRP) cation channels are a critical pathway for Ca2+entry during pulmonary artery (PA) smooth muscle contraction. However, whether canonical TRP (TRPC) subunits and which TRP channel isoforms are involved in store depletion-induced pulmonary vasoconstriction in vivo remain unclear. This study was designed to test whether overexpression of the human TRPC1 gene ( hTRPC1) in rat PA enhances pulmonary vasoconstriction due to store depletion-mediated Ca2+influx. The hTRPC1 was infected into rat PA rings with an adenoviral vector. RT-PCR and Western blot analyses confirmed the mRNA and protein expression of hTRPC1 in the arterial rings. The amplitude of active tension induced by 40 mM K+(40K) in PA rings infected with an empty adenoviral vector (647 ± 88 mg/mg) was similar to that in PA rings infected with hTRPC1 (703 ± 123 mg/mg, P = 0.3). However, the active tension due to capacitative Ca2+entry (CCE) induced by cyclopiazonic acid was significantly enhanced in PA rings overexpressing hTRPC1 (91 ± 13% of 40K-induced contraction) compared with rings infected with an empty adenoviral vector (61 ± 14%, P < 0.001). Endothelial expression of hTRPC1 was not involved since the CCE-induced vasoconstriction was also enhanced in endothelium-denuded PA rings infected with the adenoviral vector carrying hTRPC1. These observations demonstrate that hTRPC1 is an important Ca2+-permeable channel that mediates pulmonary vasoconstriction when PA smooth muscle cell intracellular Ca2+stores are depleted.

Keywords

Male, Indoles, Vasodilator Agents, Gene Expression, Pulmonary Artery, Kidney, Transfection, Muscle, Smooth, Vascular, Adenoviridae, Rats, Rats, Sprague-Dawley, Vasoconstriction, Animals, Humans, Calcium, Calcium Channels, Endothelium, Vascular, Cells, Cultured, TRPC Cation Channels

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    113
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
113
Top 10%
Top 10%
Top 10%