Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.)
pmid: 27061371
Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.)
The arsenic (As) is a toxic element causing major health concern worldwide. Arsenate stress caused no significant reduction in growth parameters and shoot electrolyte leakage but showed increased root arsenate reductase activity along with relatively lower root As content and shoot translocation rate in As-tolerant BRRI 33 than in As-sensitive BRRI 51. It indicates that As inhibition and tolerance mechanisms are driven by root responses. Interestingly, As stress showed consistent decrease in phosphate content and expression of phosphate transporters (OsPT8, OsPT4, OsPHO1;2) under both high and low phosphate conditions in roots of BRRI 33, suggesting that limiting phosphate transport mainly mediated by OsPHO1;2 directs less As accumulation in BRRI 33. Further, BRRI 33 showed simultaneous increase in OsPCS1 (phytochelatin synthase) expression and phytochelatins (PCs) content in roots under As exposure supporting the hypothesis that root As sequestration acts as 'firewall system' in limiting As translocation in shoots. Furthermore, increased CAT, POD, SOD, GR, along with elevated glutathione, methionine, cysteine and proline suggests that strong antioxidant defense plays integral part to As tolerance in BRRI 33. Again, BRRI 33 self-grafts and plants having BRRI 33 rootstock combined with BRRI 51 scion had no adverse effect on morphological parameters but showed reduced As translocation rate, increased root arsenate reductase activity, shoot PC synthesis and root OsPHO1;2 expression due to As stress. It confirms that signal driving As tolerance mechanisms is generated in the roots. These findings can be implemented for As detoxification and As-free transgenic rice production for health safety.
- Bangladesh Council of Scientific and Industrial Research Bangladesh
- University of Rajshahi Bangladesh
Arsenate Reductases, Spectrophotometry, Atomic, Biological Transport, Oryza, Real-Time Polymerase Chain Reaction, Adaptation, Physiological, Plant Roots, Antioxidants, Arsenic, Plant Leaves, Phenotype, Gene Expression Regulation, Plant, Phytochelatins, Amino Acids, Plant Shoots, Plant Proteins
Arsenate Reductases, Spectrophotometry, Atomic, Biological Transport, Oryza, Real-Time Polymerase Chain Reaction, Adaptation, Physiological, Plant Roots, Antioxidants, Arsenic, Plant Leaves, Phenotype, Gene Expression Regulation, Plant, Phytochelatins, Amino Acids, Plant Shoots, Plant Proteins
7 Research products, page 1 of 1
- 2016IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2021IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).116 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
