Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: DNA binding specificity based on energetics of DNA kinking
pmid: 11724532
Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: DNA binding specificity based on energetics of DNA kinking
The catabolite activator protein (CAP) makes no direct contact with the consensus base-pair T:A at position 6 of the DNA half-site 5'-A(1)A(2)A(3)T(4)G(5)T(6)G(7)A(8)T(9)C(10)T(11)-3' but, nevertheless, exhibits strong specificity for T:A at position 6. Binding of CAP results in formation of a sharp DNA kink, with a roll angle of approximately 40 degrees and a twist angle of approximately 20 degrees, between positions 6 and 7 of the DNA half-site. The consensus base-pair T:A at position 6 and the consensus base-pair G:C at position 7 form a T:A/G:C step, which is known to be associated with DNA flexibility. It has been proposed that specificity for T:A at position 6 is a consequence of formation of the DNA kink between positions 6 and 7, and of effects of the T:A(6)/G:C(7) step on the geometry of DNA kinking, or the energetics of DNA kinking. In this work, we determine crystallographic structures of CAP-DNA complexes having the consensus base-pair T:A at position 6 or the non-consensus base-pair C:G at position 6. We show that complexes containing T:A or C:G at position 6 exhibit similar overall DNA bend angles and local geometries of DNA kinking. We infer that indirect readout in this system does not involve differences in the geometry of DNA kinking but, rather, solely differences in the energetics of DNA kinking. We further infer that the main determinant of DNA conformation in this system is protein-DNA interaction, and not DNA sequence.
- Rutgers, The State University of New Jersey United States
- Howard Hughes Medical Institute United States
Models, Molecular, Binding Sites, Cyclic AMP Receptor Protein, Base Sequence, Protein Conformation, DNA, Crystallography, X-Ray, Substrate Specificity, DNA-Binding Proteins, Consensus Sequence, Nucleic Acid Conformation, Thermodynamics, Pliability, Base Pairing
Models, Molecular, Binding Sites, Cyclic AMP Receptor Protein, Base Sequence, Protein Conformation, DNA, Crystallography, X-Ray, Substrate Specificity, DNA-Binding Proteins, Consensus Sequence, Nucleic Acid Conformation, Thermodynamics, Pliability, Base Pairing
10 Research products, page 1 of 1
- 1984IsAmongTopNSimilarDocuments
- 1996IsAmongTopNSimilarDocuments
- 1992IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 1994IsAmongTopNSimilarDocuments
- 1998IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).56 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
