Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2005
versions View all 3 versions

Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2

Authors: Mendive, Fernando M; Van Loy, Tom; Claeysen, Sylvie; Poels, Jeroen; Williamson, Michael; Hauser, Frank; Grimmelikhuijzen, Cornelis J P; +2 Authors

Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2

Abstract

Bursicon is a neurohumoral agent responsible for tanning and hardening of the cuticle and expansion of the wings during the final phase of insect metamorphosis. Although the hormonal activity was described more than 40 years ago, the molecular nature of bursicon has remained elusive. We identify here Drosophila bioactive bursicon as a heterodimer made of two cystine knot polypeptides. This conclusion was reached in part from the unexpected observation that in the genome of the honey bee, the orthologs of the two Drosophila proteins are predicted to be fused in a single open reading frame. The heterodimeric Drosophila protein displays bursicon bioactivity in freshly eclosed neck‐ligated flies and is the natural agonist of the orphan G protein‐coupled receptor DLGR2.

Keywords

Invertebrate Hormones, Molecular Sequence Data, Sequence Homology, Cystine knot, Leucine-rich repeats containing GPCR, Messenger -- genetics, Receptors, G-Protein-Coupled, Open Reading Frames, Conditioned, Drosophila -- metabolism, G-Protein-Coupled -- agonists, Receptors, Glycoprotein hormone receptor, Animals, G protein-coupled receptor, Amino Acid Sequence, RNA, Messenger, Invertebrate Hormones -- chemistry, Chromatography, Gel, Sequence Homology, Amino Acid, Comparative genomics, Sciences bio-médicales et agricoles, Culture Media, Bursicon, Amino Acid, Invertebrate Hormones -- genetics, Culture Media, Conditioned, Chromatography, Gel, RNA, Drosophila, Invertebrate Hormones -- pharmacology, Dimerization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    144
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
144
Top 10%
Top 10%
Top 1%
bronze