Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archives of Biochemi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Biochemistry and Biophysics
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Activity and Cellular Location inSaccharomyces cerevisiaeof Chimeric Mouse/Yeast andBacillus subtilis/Yeast Ferrochelatases

Authors: M, Góra; J, Rytka; R, Labbe-Bois;

Activity and Cellular Location inSaccharomyces cerevisiaeof Chimeric Mouse/Yeast andBacillus subtilis/Yeast Ferrochelatases

Abstract

We have constructed a series of chimeric yeast/mouse and yeast/Bacillus subtilis ferrochelatase genes in order to investigate domains of the ferrochelatase that are important for activity and/or association with the membrane. These genes were expressed in a Saccharomyces cerevisiae mutant in which the endogenous ferrochelatase gene (HEM15) had been deleted, and the phenotypes of the transformants were characterized. Exchanging the approximately 40-amino-acid C-terminus between the yeast and mouse ferrochelatases caused a total loss of activity and the hybrid proteins were unstable when overproduced in Escherichia coli. The water-soluble ferrochelatase of B. subtilis did not complement the yeast mutant, although a large amount of active protein accumulated in the cytosol. Addition of the N-terminal leader sequence of yeast ferrochelatase to the B. subtilis enzyme targeted the fusion protein to mitochondria, but both the precursor and the mature forms of the enzyme were inactive in vivo and had residual activity when measured in vitro. An internal approximately 45-amino-acid segment located at the N-terminus of yeast ferrochelatase was identified, which, when replaced with the corresponding 30-amino-acid segment of the B. subtilis enzyme, caused the yeast enzyme to be located in the mitochondrial matrix as a soluble protein. The fusion protein was inactive in vivo and had residual activity in vitro. We speculate that this segment, which shows the greatest variability between species, is responsible for the association of the enzyme with the membrane.

Keywords

Sequence Homology, Amino Acid, Recombinant Fusion Proteins, Cell Membrane, Molecular Sequence Data, Saccharomyces cerevisiae, Protein Sorting Signals, Peptide Fragments, Enzyme Activation, Mice, Phenotype, Animals, Amino Acid Sequence, Ferrochelatase, Bacillus subtilis, Sequence Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Top 10%
Top 10%