Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2007
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2007 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Spitz from the retina regulates genes transcribed in the second mitotic wave, peripodial epithelium, glia and plasmatocytes of the Drosophila eye imaginal disc

Authors: Firth, Lucy C.; Baker, Nicholas E.;

Spitz from the retina regulates genes transcribed in the second mitotic wave, peripodial epithelium, glia and plasmatocytes of the Drosophila eye imaginal disc

Abstract

Proliferation, differentiation, and other processes must be coordinated during the development of multi-cellular animals. A discrete and regulated cell division, the Second Mitotic Wave (SMW), occurs concomitantly with early cell fate decisions in the Drosophila developing retina. Signals from the Epidermal Growth Factor Receptor (EGFR) are required to promote cell cycle arrest of specified cells and antagonize S-phase entry in the SMW. Cells that do not receive any EGFR activity enter S-phase in the SMW in response to the Notch pathway. To identify genes with potential roles in the SMW, we used microarrays and genetic manipulation of the EGFR pathway to seek transcripts regulated during the SMW. RNA in situ hybridization of 126 differentially transcribed genes revealed genes that have novel expression patterns in cells closely associated with the SMW. In addition, other genes' transcripts were regulated in the differentiating photoreceptor cells, retinal basal glia, the peripodial epithelium and blood cells (plasmatocytes) associated with the developing retina. These novel targets suggest that during eye development, EGFR activity coordinates transcriptional programs in other tissues with retinal differentiation.

Related Organizations
Keywords

Base Sequence, Epidermal Growth Factor, Transcription, Genetic, Gene Expression Profiling, Gene Expression Regulation, Developmental, Membrane Proteins, Mitosis, Epithelial Cells, Genes, Insect, Cell Biology, Eye, Retina, ErbB Receptors, Animals, Drosophila Proteins, Drosophila, Molecular Biology, Neuroglia, In Situ Hybridization, Developmental Biology, DNA Primers, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Average
Top 10%
hybrid