Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemical Journal
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

The Arabidopsis ALDP protein homologue COMATOSE is instrumental in peroxisomal acetate metabolism

Authors: Mark A, Hooks; James E, Turner; Elaine C, Murphy; Katherine A, Johnston; Sally, Burr; Szymon, Jarosławski;

The Arabidopsis ALDP protein homologue COMATOSE is instrumental in peroxisomal acetate metabolism

Abstract

The Arabidopsis acn (acetate non-utilizing) mutants were isolated by fluoroacetate-resistant germination and seedling establishment. We report the characterization of the acn2 mutant. Physiological analyses of acn2 showed that it possessed characteristics similar to those of the mutants cts (COMATOSE)-1 and pxa [peroxisomal ABC (ATP-binding-cassette) transporter]1. The acn2 locus was mapped to within 3 cM of the CTS gene on the bottom arm of chromosome IV using CAPS (cleavage amplification polymorphism) and SSLP (simple sequence-length polymorphism) markers. Crossing acn2 and cts-1 failed to restore the fluoroacetate-sensitive phenotype, suggesting that these mutations were allelic. Sequencing of the ACN2 locus revealed a C→T nonsense mutation in exon 13, which would have resulted in the elimination of the C-terminal hemitransporter domain of the encoded protein. Neither the full-length CTS protein nor the truncated protein was detected on immunoblots using either C-terminal- or N-terminal-specific anti-CTS antibodies respectively, demonstrating the absence of the entire CTS protein in acn2 mutants. Emerged seedlings of both cts-1 and pxa1 alleles displayed increased resistance to FAc (monofluoroacetic acid) compared with the corresponding wild-type seedlings. Complementation studies showed that mutation of the CTS gene was responsible for the FAc-resistant phenotype, as when the wild-type protein was expressed in both the cts-1 and pxa1 mutant lines, the strains became FAc-sensitive. Feeding studies confirmed that both acn2 and cts-1 mutants were compromised in their ability to convert radiolabelled acetate into soluble carbohydrate. These results demonstrate a role for the ABC protein CTS in providing acetate to the glyoxylate cycle in developing seedlings.

Related Organizations
Keywords

Adenosine Triphosphatases, Arabidopsis Proteins, Arabidopsis, Germination, Acetates, Fatty Acid Transport Proteins, Plants, Genetically Modified, ATP Binding Cassette Transporter, Subfamily D, Member 1, Cell Line, Phenotype, Codon, Nonsense, Gene Expression Regulation, Plant, Seedlings, Peroxisomes, ATP-Binding Cassette Transporters

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
bronze