Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Cell ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Cell Biology
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2011
Data sources: PubMed Central
The Journal of Cell Biology
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

EB1 promotes microtubule dynamics by recruiting Sentin in Drosophila cells

Authors: Li, Wenjing; Miki, Tomohiro; Watanabe, Takashi; Kakeno, Mai; Sugiyama, Ikuko; Kaibuchi, Kozo; Goshima, Gohta;

EB1 promotes microtubule dynamics by recruiting Sentin in Drosophila cells

Abstract

Highly conserved EB1 family proteins bind to the growing ends of microtubules, recruit multiple cargo proteins, and are critical for making dynamic microtubules in vivo. However, it is unclear how these master regulators of microtubule plus ends promote microtubule dynamics. In this paper, we identify a novel EB1 cargo protein, Sentin. Sentin depletion in Drosophila melanogaster S2 cells, similar to EB1 depletion, resulted in an increase in microtubule pausing and led to the formation of shorter spindles, without displacing EB1 from growing microtubules. We demonstrate that Sentin’s association with EB1 was critical for its plus end localization and function. Furthermore, the EB1 phenotype was rescued by expressing an EBN-Sentin fusion protein in which the C-terminal cargo-binding region of EB1 is replaced with Sentin. Knockdown of Sentin attenuated plus end accumulation of Msps (mini spindles), the orthologue of XMAP215 microtubule polymerase. These results indicate that EB1 promotes dynamic microtubule behavior by recruiting the cargo protein Sentin and possibly also a microtubule polymerase to the microtubule tip.

Related Organizations
Keywords

Drosophila melanogaster, Recombinant Fusion Proteins, Animals, Drosophila Proteins, RNA Interference, Microtubule-Associated Proteins, Microtubules, Research Articles, Cell Line

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
Green
hybrid