EB1 promotes microtubule dynamics by recruiting Sentin in Drosophila cells
EB1 promotes microtubule dynamics by recruiting Sentin in Drosophila cells
Highly conserved EB1 family proteins bind to the growing ends of microtubules, recruit multiple cargo proteins, and are critical for making dynamic microtubules in vivo. However, it is unclear how these master regulators of microtubule plus ends promote microtubule dynamics. In this paper, we identify a novel EB1 cargo protein, Sentin. Sentin depletion in Drosophila melanogaster S2 cells, similar to EB1 depletion, resulted in an increase in microtubule pausing and led to the formation of shorter spindles, without displacing EB1 from growing microtubules. We demonstrate that Sentin’s association with EB1 was critical for its plus end localization and function. Furthermore, the EB1 phenotype was rescued by expressing an EBN-Sentin fusion protein in which the C-terminal cargo-binding region of EB1 is replaced with Sentin. Knockdown of Sentin attenuated plus end accumulation of Msps (mini spindles), the orthologue of XMAP215 microtubule polymerase. These results indicate that EB1 promotes dynamic microtubule behavior by recruiting the cargo protein Sentin and possibly also a microtubule polymerase to the microtubule tip.
- Nagoya University Japan
Drosophila melanogaster, Recombinant Fusion Proteins, Animals, Drosophila Proteins, RNA Interference, Microtubule-Associated Proteins, Microtubules, Research Articles, Cell Line
Drosophila melanogaster, Recombinant Fusion Proteins, Animals, Drosophila Proteins, RNA Interference, Microtubule-Associated Proteins, Microtubules, Research Articles, Cell Line
11 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).50 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
