Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Tyrosol is a quorum-sensing molecule in Candida albicans

Authors: Hao, Chen; Masaki, Fujita; Qinghua, Feng; Jon, Clardy; Gerald R, Fink;

Tyrosol is a quorum-sensing molecule in Candida albicans

Abstract

The human fungal pathogen Candida albicans shows a significant lag in growth when diluted into fresh minimal medium. This lag is abolished by the addition of conditioned medium from a high-density culture. The active component of conditioned medium is tyrosol, which is released into the medium continuously during growth. Under conditions permissive for germ-tube formation, tyrosol stimulates the formation of these filamentous protrusions. Because germ-tube formation is inhibited by farnesol, another quorum-sensing molecule, this process must be under complex positive and negative control by environmental conditions. The identification of tyrosol as an autoregulatory molecule has important implications on the dynamics of growth and morphogenesis in Candida .

Keywords

Base Sequence, Reverse Transcriptase Polymerase Chain Reaction, Culture Media, Conditioned, Candida albicans, Molecular Sequence Data, Phenylethyl Alcohol, Nuclear Magnetic Resonance, Biomolecular, Chromatography, High Pressure Liquid, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    435
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
435
Top 1%
Top 1%
Top 1%
bronze