Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Yeastarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Yeast
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Yeast
Article . 2013
versions View all 2 versions

Gain‐of‐function mutation in the KlPDR1 gene encoding multidrug resistance regulator in Kluyveromyces lactis

Authors: Zuzana Balazfyova; Nora Toth Hervay; Yvetta Gbelska;

Gain‐of‐function mutation in the KlPDR1 gene encoding multidrug resistance regulator in Kluyveromyces lactis

Abstract

AbstractKlPdr1p is a single Kluyveromyces lactis homologue of Saccharomyces cerevisiae ScPdr1p/ScPdr3p, the main transcriptional regulators of genes involved in S. cerevisiae multidrug resistance. KlPDR1 deletion leads to a sharp increase in K. lactis drug susceptibility. The presence of putative PDRE and YRE regulatory elements in the KlPDR1 gene promoter suggests an autoregulation of its transcription as well as its control by KlYap1p, the transcription factor involved in oxidative stress response. In this study, one plasmid‐borne Klpdr1‐1 allele that led to amino acid substitution (L273P) in the KlPdr1p was isolated. Overexpression of the Klpdr1‐1 allele from a multicopy plasmid in the K. lactis wild‐type and Klpdr1Δ mutant strain increased the tolerance of transformants to oligomycin. The plasmid‐borne Klpdr1‐1 allele increased the activation of the ScPDR5 promoter and complemented the drug hypersensitivity of the S. cerevisiae pdr1Δ pdr3Δ mutant strain. The results indicate that L273P amino acid substitution is the result of a gain‐of‐function mutation in the KlPDR1 gene that confers KlPdr1p hyperactivity, as revealed by a high expression of the ABC transporter gene KlPDR5, leading to multidrug resistance and rhodamine 6G efflux out of the cells. Copyright © 2013 John Wiley & Sons, Ltd.

Related Organizations
Keywords

Transcriptional Activation, Antifungal Agents, Genetic Complementation Test, Mutation, Missense, Gene Expression, Saccharomyces cerevisiae, Kluyveromyces, Drug Resistance, Multiple, Fungal, Oligomycins, Promoter Regions, Genetic, Gene Deletion, Plasmids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average