Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Toxicological Scienc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Toxicological Sciences
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

A Genome-Wide Screen of Genes Involved in Cadmium Tolerance in Schizosaccharomyces pombe

Authors: Patrick J, Kennedy; Ajay A, Vashisht; Kwang-Lae, Hoe; Dong-Uk, Kim; Han-Oh, Park; Jacqueline, Hayles; Paul, Russell;

A Genome-Wide Screen of Genes Involved in Cadmium Tolerance in Schizosaccharomyces pombe

Abstract

Cadmium is a worldwide environmental toxicant responsible for a range of human diseases including cancer. Cellular injury from cadmium is minimized by stress-responsive detoxification mechanisms. We explored the genetic requirements for cadmium tolerance by individually screening mutants from the fission yeast (Schizosaccharomyces pombe) haploid deletion collection for inhibited growth on agar growth media containing cadmium. Cadmium-sensitive mutants were further tested for sensitivity to oxidative stress (hydrogen peroxide) and osmotic stress (potassium chloride). Of 2649 mutants screened, 237 were sensitive to cadmium, of which 168 were cadmium specific. Most were previously unknown to be involved in cadmium tolerance. The 237 genes represent a number of pathways including sulfate assimilation, phytochelatin synthesis and transport, ubiquinone (Coenzyme Q10) biosynthesis, stress signaling, cell wall biosynthesis and cell morphology, gene expression and chromatin remodeling, vacuole function, and intracellular transport of macromolecules. The ubiquinone biosynthesis mutants are acutely sensitive to cadmium but only mildly sensitive to hydrogen peroxide, indicating that Coenzyme Q10 plays a larger role in cadmium tolerance than just as an antioxidant. These and several other mutants turn yellow when exposed to cadmium, suggesting cadmium sulfide accumulation. This phenotype can potentially be used as a biomarker for cadmium. There is remarkably little overlap with a comparable screen of the Saccharomyces cerevisiae haploid deletion collection, indicating that the two distantly related yeasts utilize significantly different strategies for coping with cadmium stress. These strategies and their relation to cadmium detoxification in humans are discussed.

Keywords

Saccharomyces cerevisiae Proteins, Time Factors, Genotype, Sulfates, Gene Expression Profiling, Hydrogen Peroxide, Saccharomyces cerevisiae, Potassium Chloride, Oxidative Stress, Phenotype, Osmotic Pressure, Gene Expression Regulation, Fungal, Mutation, Schizosaccharomyces, Cadmium Compounds, Environmental Pollutants, Schizosaccharomyces pombe Proteins, Genome, Fungal, Cell Proliferation, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research