Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1998 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Identification and Characterization of Novel Clathrin Adaptor-related Proteins

Authors: H, Takatsu; M, Sakurai; H W, Shin; K, Murakami; K, Nakayama;

Identification and Characterization of Novel Clathrin Adaptor-related Proteins

Abstract

We have identified a human approximately 87-kDa protein, designated as gamma2-adaptin, that is similar to gamma-adaptin (called gamma1-adaptin in this paper), a large chain of the AP-1 clathrin-associated adaptor complex, not only in the primary structure (60% amino acid identity) but also in the domain organization. Northern blot analysis has shown that its mRNA is expressed in a variety of tissues. Analysis using a yeast two-hybrid system has revealed that, similarly to gamma1-adaptin, gamma2-adaptin is capable of interacting not only with the sigma1 chain (called as sigma1A in this paper), the small chain of the AP-1 complex, but also with a novel sigma1-like protein, designated as sigma1B, which shows an 87% amino acid identity to sigma1A; and that, unlike gamma1-adaptin, it is unable to interact with beta1-adaptin, another large chain of the AP-1 complex. Immunofluorescence microscopy analysis has revealed that gamma2-adaptin is localized to paranuclear vesicular structures that are not superimposed on structures containing gamma1-adaptin. Furthermore, unlike gamma1-adaptin, gamma2-adaptin is recruited onto membranes in the presence of a fungal antibiotic, brefeldin A. These data suggest that gamma2-adaptin constitute a novel adaptor-related complex that participates in a transport step different from that of AP-1.

Keywords

Binding Sites, Adaptor Protein Complex sigma Subunits, Base Sequence, Adaptor Protein Complex 1, Molecular Sequence Data, Adaptor Protein Complex 2, Membrane Proteins, Polymerase Chain Reaction, Clathrin, Recombinant Proteins, Cell Line, Adaptor Proteins, Vesicular Transport, Adaptor Protein Complex alpha Subunits, Organ Specificity, Humans, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular, Adaptor Protein Complex gamma Subunits, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 10%
Top 10%
Top 10%
gold