Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Endocrinologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrinology
Article
Data sources: UnpayWall
Endocrinology
Article . 2008 . Peer-reviewed
Data sources: Crossref
Endocrinology
Article . 2008
versions View all 2 versions

Differential Antagonism of Activin, Myostatin and Growth and Differentiation Factor 11 by Wild-Type and Mutant Follistatin

Authors: Alan L, Schneyer; Yisrael, Sidis; Anisha, Gulati; Jie L, Sun; Henry, Keutmann; Philip A, Krasney;

Differential Antagonism of Activin, Myostatin and Growth and Differentiation Factor 11 by Wild-Type and Mutant Follistatin

Abstract

Follistatin binds and neutralizes members of the TGFβ superfamily including activin, myostatin, and growth and differentiation factor 11 (GDF11). Crystal structure analysis of the follistatin-activin complex revealed extensive contacts between follistatin domain (FSD)-2 and activin that was critical for the high-affinity interaction. However, it remained unknown whether follistatin residues involved with myostatin and GDF11 binding were distinct from those involved with activin binding. If so, this would allow development of myostatin antagonists that would not inhibit activin actions, a desirable feature for development of myostatin antagonists for treatment of muscle-wasting disorders. We tested this hypothesis with our panel of point and domain swapping follistatin mutants using competitive binding analyses and in vitro bioassays. Our results demonstrate that activin binding and neutralization are mediated primarily by FSD2, whereas myostatin binding is more dependent on FSD1, such that deletion of FSD2 or adding an extra FSD1 in place of FSD2 creates myostatin antagonists with vastly reduced activin antagonism. However, these mutants also bind GDF11, indicating that further analysis is required for creation of myostatin antagonists that will not affect GDF11 activity that could potentially elicit GDF11-induced side effects in vivo.

Related Organizations
Keywords

Follistatin, Myostatin, Transfection, Binding, Competitive, Activins, Protein Structure, Tertiary, Growth Differentiation Factors, Transforming Growth Factor beta, Bone Morphogenetic Proteins, Humans, Mutant Proteins, Cells, Cultured, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 10%
Top 10%
Top 10%
bronze