<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Patterning of frontal cortex subdivisions by Fgf17
Patterning of frontal cortex subdivisions by Fgf17
The frontal cortex (FC) is the seat of higher cognition. The genetic mechanisms that control formation of the functionally distinct subdivisions of the FC are unknown. Using a set of gene expression markers that distinguish subdivisions of the newborn mouse FC, we show that loss of Fgf17 selectively reduces the size of the dorsal FC whereas ventral/orbital FC appears normal. These changes are complemented by a rostral shift of sensory cortical areas. Thus, Fgf17 functions similar to Fgf8 in patterning the overall neocortical map but has a more selective role in regulating the properties of the dorsal but not ventral FC.
- University of California System United States
- University of California, San Francisco United States
Fibroblast Growth Factors, Mice, Knockout, Mice, Fibroblast Growth Factor 8, Mutation, Animals, Gene Expression Regulation, Developmental, Biomarkers, Body Patterning, Frontal Lobe
Fibroblast Growth Factors, Mice, Knockout, Mice, Fibroblast Growth Factor 8, Mutation, Animals, Gene Expression Regulation, Developmental, Biomarkers, Body Patterning, Frontal Lobe
59 Research products, page 1 of 6
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).141 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
