Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Journal of Cell Biology
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

The syncytial visceral and somatic musculature develops independently of β3-Tubulin during Drosophila embryogenesis, while maternally supplied β1-Tubulin is stable until the early steps of myoblast fusion

Authors: Anja, Rudolf; Detlev, Buttgereit; Karl-Heinz, Rexer; Renate, Renkawitz-Pohl;

The syncytial visceral and somatic musculature develops independently of β3-Tubulin during Drosophila embryogenesis, while maternally supplied β1-Tubulin is stable until the early steps of myoblast fusion

Abstract

Microtubules are necessary for fusion and elongation of vertebrate muscle cells. In Drosophila, several isoforms of β-Tubulin, the functional subunit of microtubules, are expressed in different tissues of the developing embryo, while solely the β3-Tubulin isoform is detected in large amounts during differentiation of the somatic and visceral musculature. Here we show the unexpected result that all mesodermal tissues develop correctly in β3-Tubulin loss of function mutants. Furthermore, we show that β2-Tubulin transcripts are not detectable in embryos and an exceptional zygotic β1-Tubulin expression in β3-Tubulin mutants cannot be observed. Nevertheless, a maternally contributed β1-Tubulin-GFP fusion protein (from protein trap collection, Buszczak et al., 2007, Genetics 175, 1505-1531) acts in a dominant negative way, disturbing embryonic development from early stages on. This effect can be observed to the same extent in a zygotic β3-Tubulin mutant situation. Our results indicate that the maternally supplied β1-Tubulin based microtubule network is sufficient for myoblast fusion, myotube elongation and sarcomere formation both during visceral and somatic muscle development in Drosophila embryogenesis.

Related Organizations
Keywords

Sarcomeres, Embryo, Nonmammalian, Calcium-Binding Proteins, Microtubules, Myoblasts, Tubulin, Morphogenesis, Animals, Drosophila Proteins, Drosophila, Mutant Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Average
gold