Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://dx.doi.org/10...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2015
versions View all 3 versions

Improper protein trafficking contributes to artemisinin sensitivity in cells lacking the KDAC Rpd3p

Authors: Jensen, Amornrat Naranuntarat; Chindaudomsate, Worathad; Thitiananpakorn, Kanate; Mongkolsuk, Skorn; Jensen, Laran T.;

Improper protein trafficking contributes to artemisinin sensitivity in cells lacking the KDAC Rpd3p

Abstract

Lysine deacetylases (KDACs) inhibitors may have therapeutic value in anti‐malarial combination therapies with artemisinin. To evaluate connections between KDACs and artemisinin, Saccharomyces cerevisiae deletion mutants in KDAC genes were assayed. Deletion of RPD3, but not other KDAC genes, resulted in strong sensitivity to artemisinin, which was also observed in sit4Δ mutants with impaired endoplasmic reticulum (ER) to Golgi protein trafficking. Decreased accumulation of the transporters Pdr5p, Fur4p, and Tat2p was observed in rpd3Δ and sit4Δ cells. The unfolded protein response is induced in rpd3Δ cells consistent with retention of proteins in the ER. Disruption of protein trafficking appears to sensitize cells to artemisinin and targeting these pathways may be useful as part of artemisinin based anti‐malarial therapy.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Protein trafficking, Saccharomyces cerevisiae, RPD3, Artemisinins, Histone Deacetylases, Malaria, Lysine deacetylase, Protein Transport, Drug Resistance, Fungal, Stress, Physiological, Unfolded Protein Response, Artemisinin, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Average