<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Proteomics Study of Peripheral Blood Mononuclear Cells in Down Syndrome Children
Proteomics Study of Peripheral Blood Mononuclear Cells in Down Syndrome Children
Down syndrome (DS) is the most common chromosomal disorder and the leading genetic cause of intellectual disability in humans, which results from the triplication of chromosome 21. To search for biomarkers for the early detection and exploration of the disease mechanisms, here, we investigated the protein expression signature of peripheral blood mononuclear cells (PBMCs) in DS children compared with healthy donors (HD) by using an in-depth label-free shotgun proteomics approach. Identified proteins are found associated with metabolic pathways, cellular trafficking, DNA structure, stress response, cytoskeleton network, and signaling pathways. The results showed that a well-defined number of dysregulated pathways retain a prominent role in mediating DS pathological features. Further, proteomics results are consistent with published study in DS and provide evidences that increased oxidative stress and the increased induction of stress related response, is a participant in DS pathology. In addition, the expression levels of some key proteins have been validated by Western blot analysis while protein carbonylation, as marker of protein oxidation, was investigated. The results of this study propose that PBMCs from DS children might be in an activated state where endoplasmic reticulum stress and increased production of radical species are one of the primary events contributing to multiple DS pathological features.
Proteomics, 570, Down syndrome, peripheral blood mononuclear cells (PBMCs), unfolded protein response, RM1-950, down syndrome; oxidative stress; peripheral blood mononuclear cells (PBMCs); proteomics; unfolded protein response, Article, Peripheral blood mononuclear cells (PBMCs), Unfolded protein response, proteomics, Settore MED/38 - PEDIATRIA GENERALE E SPECIALISTICA, Oxidative stress, oxidative stress, Therapeutics. Pharmacology
Proteomics, 570, Down syndrome, peripheral blood mononuclear cells (PBMCs), unfolded protein response, RM1-950, down syndrome; oxidative stress; peripheral blood mononuclear cells (PBMCs); proteomics; unfolded protein response, Article, Peripheral blood mononuclear cells (PBMCs), Unfolded protein response, proteomics, Settore MED/38 - PEDIATRIA GENERALE E SPECIALISTICA, Oxidative stress, oxidative stress, Therapeutics. Pharmacology
171 Research products, page 1 of 18
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).81 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
