Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Immunology
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Peyer’s Patches Are Required for the Induction of Rapid Th1 Responses in the Gut and Mesenteric Lymph Nodes during an Enteric Infection

Authors: Sue-fen Kwa; Adrian Smith; Peter C. L. Beverley;

Peyer’s Patches Are Required for the Induction of Rapid Th1 Responses in the Gut and Mesenteric Lymph Nodes during an Enteric Infection

Abstract

AbstractThe Peyer’s patches (PP) and mesenteric lymph nodes (MLN) are structural components of the gut-associated lymphoid tissues and contribute to the induction of immune responses toward infection in the gastrointestinal tract. These secondary lymphoid organs provide structural organization for efficient cellular interactions and the initiation of primary adaptive immune responses against infection. Immunity against primary infection with the enteric apicomplexan parasite, Eimeria vermiformis, depends on the rapid induction of local Th1 responses. Lymphotoxin (LT)-deficient mice which have various defects in secondary lymphoid organs were infected with E. vermiformis. The relative susceptibility of LTα−/−, LTβ−/−, LTα+/−β+/− mice and bone marrow chimeras, indicated that rapid protective Th1 responses required both PP and MLN. Moreover, the timing of Th1 induction in both MLN and gut was dependent on the presence of PP suggesting a level of cooperation between immune responses induced in these distinct lymphoid structures. The delay in Th1 induction was attributable to the delayed arrival of a broad range of dendritic cell subsets in the MLN and a substantial reduction of CD8α−CD11bhigh B220− dendritic cells in PP-deficient mice.

Keywords

Lymphotoxin-beta, Mice, Knockout, Coccidiosis, Membrane Proteins, Cell Differentiation, Mice, Transgenic, Dendritic Cells, Lymphocyte Activation, Mice, Inbred C57BL, Kinetics, Mice, Peyer's Patches, Cell Movement, Animals, Eimeria, Mesentery, Lymph Nodes, Intestinal Diseases, Parasitic, Intestinal Mucosa, Lymphotoxin-alpha

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
bronze