Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Hepatology
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Expression of platelet-derived growth factor in newly formed cholangiocytes during experimental biliary fibrosis in rats

Authors: GRAPPONE, CECILIA; PINZANI, MASSIMO; M. Parola; G. Pellegrini; CALIGIURI, ALESSANDRA; R. DeFranco; MARRA, FABIO; +3 Authors

Expression of platelet-derived growth factor in newly formed cholangiocytes during experimental biliary fibrosis in rats

Abstract

Chronic cholestasis stimulates a fibroductular reaction which may progress to secondary biliary fibrosis and cirrhosis. Since platelet-derived growth factor has been indicated as a major fibrogenic factor in chronic liver disease, we analyzed its expression and that of its receptor beta subunit in a rat model of chronic cholestasis.Liver tissue samples collected at 7, 10, 21, and 28 days after induction of cholestasis obtained by bile duct ligation, were analyzed by immunohistochemistry, in situ hybridization and RNase protection assay for the expression of platelet-derived growth factor (PDGF)-B chain and receptor beta subunit. Furthermore, the expression of PDGF-B chain mRNA was analyzed in highly purified cholangiocytes from normal and cholestatic rat liver.In cholestatic liver, platelet-derived growth factor-BB and B chain mRNA expression increased up to 4 weeks in epithelial cells of proliferating bile ducts, and periductular mesenchymal cells. The increased expression of PDGF-B chain mRNA was confirmed in highly purified cholangiocytes obtained from normal and cholestatic rat liver. The expression of the receptor beta subunit progressively increased after induction of cholestasis and was mainly localized to desmin-positive periductular hepatic stellate cells.These data suggest that platelet-derived growth factor-B chain can be synthesized by cholangiocytes during chronic cholestasis. The presence of its receptor on periductular hepatic stellate cells raises the possibility that, in this experimental setting, this cytokine might contribute to fibrogenesis in vivo.

Country
Italy
Keywords

Common Bile Duct, Platelet-Derived Growth Factor, Cholestasis, Transcription, Genetic, Becaplermin, Proto-Oncogene Proteins c-sis, Rats, Gene Expression Regulation, Liver, Chronic Disease, Animals, Female, Bile Ducts, RNA, Messenger, Rats, Wistar, In Situ Hybridization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    110
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
110
Top 10%
Top 10%
Top 10%