Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Leukocyte...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Leukocyte Biology
Article . 2003 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Autocrine inhibitory influences of α-melanocyte-stimulating hormone in malignant pleural mesothelioma

Authors: A. Catania; G. Colombo; A. Carlin; L. Garofalo; S. Gatti; R. Buffa; N. Carboni; +4 Authors

Autocrine inhibitory influences of α-melanocyte-stimulating hormone in malignant pleural mesothelioma

Abstract

AbstractMalignant pleural mesothelioma is a highly aggressive tumor arising from the mesothelial cells that line the pleural cavities. This tumor is resistant to most conventional anticancer treatments and appears to be very sensitive to growth-promoting influences of cytokines and growth factors. Identification of natural inhibitory pathways that control growth should aid discovery of novel therapeutic approaches. We hypothesized that α-melanocyte-stimulating hormone (α-MSH), which is produced by many cell types and antagonizes cytokines and growth factors, could be an endogenous inhibitory molecule in mesothelioma. Twelve mesothelioma cell lines were established from pleural effusions of patients with malignant mesothelioma. Mesothelioma cells were found to express mRNA for proopiomelanocortin and its processing enzymes; release α-MSH peptide into supernatants; and express melanocortin 1 receptor (MC1R), the high-affinity receptor for α-MSH. Immunoneutralization of MC1R in the cell lines enhanced expression of interleukin-8 (IL-8), IL-6, and transforming growth factor-β. These molecules promote mesothelioma proliferation and are considered therapeutic targets in this tumor. Coincubation of mesothelioma cells with synthetic α-MSH significantly reduced cell proliferation. The present research shows an autocrine-inhibitory circuit based on α-MSH and its receptor MC1R. Activation of MC1R by selective peptides or peptidomimetics might provide a novel strategy to reduce mesothelioma cell proliferation by taking advantage of this endogenous inhibitory circuit.

Keywords

Mesothelioma, Pro-Opiomelanocortin, Dose-Response Relationship, Drug, Pleural Neoplasms, Immunohistochemistry, Peptide Fragments, Autocrine Communication, melanocortin receptors (MCR); proopiomelanocortin (POMC); malignant mesothelioma; growth factors, alpha-MSH, Tumor Cells, Cultured, Cytokines, Humans, RNA, Neoplasm, Receptor, Melanocortin, Type 1, Cell Division

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Top 10%
bronze