Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biological and Pharm...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biological and Pharmaceutical Bulletin
Article . 2004 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Regulatory Mechanism and Physiological Role of Cytosolic Phospholipase A2

Authors: Tetsuya, Hirabayashi; Toshihiko, Murayama; Takao, Shimizu;

Regulatory Mechanism and Physiological Role of Cytosolic Phospholipase A2

Abstract

Cytosolic phospholipase A2alpha (cPLA2alpha) preferentially hydrolyzes phospholipids containing arachidonic acid and plays a key role in the biosynthesis of eicosanoids. This review discusses the essential features of cPLA2alpha regulation and addresses new insights into the functional properties of this enzyme. Full activation of the enzyme requires Ca2+ binding to an N-terminal C2 domain and phosphorylation on serine residues. Ca2+ binding induces translocation of cPLA2alpha from the cytosol to the perinuclear membranes. Serine phosphorylation is mediated by mitogen-activated protein kinases (MAPKs), Ca2+/calmodulin-dependent protein kinase II, and MAPK-interacting kinase Mnk1. Interaction with proteins and lipids, which include vimentin, annexins, NADPH oxidase, phosphatidylcholine, phosphatidylinositol 4,5-bisphosphate (PIP2), and ceramide-1-phosphate, can also modulate the activity of cPLA2alpha. Recent evidence has established the physiological and pathological roles of cPLA2alpha using cPLA2alpha knockout mice. This enzyme has been implicated in fertility, striated muscle growth, renal concentration, postischemic brain injury, arthritis, inflammatory bone resorption, intestinal polyposis, pulmonary fibrosis, acute respiratory distress syndrome, and autoimmune encephalomyelitis. Now novel three paralogs, cPLA2beta, cPLA2gamma, and cPLA2delta, have been identified in humans. cPLA2gamma is distinct from others in that it is farnesylated and lacks the C2 domain. Biological roles for these new enzymes have not yet been defined.

Related Organizations
Keywords

Models, Molecular, Phospholipases A2, Cytosol, Protein Conformation, Phosphorylation, Phospholipases A

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    213
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
213
Top 10%
Top 10%
Top 1%
gold