Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2000 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Oncogene
Article . 2000
versions View all 2 versions

Tracheal development and the von Hippel–Lindau tumor suppressor homolog in Drosophila

Authors: B, Adryan; H J, Decker; T S, Papas; T, Hsu;

Tracheal development and the von Hippel–Lindau tumor suppressor homolog in Drosophila

Abstract

von Hippel-Lindau disease is a hereditary cancer syndrome. Mutations in the VHL tumor suppressor gene predispose individuals to highly vascularized tumors. However, VHL-deficient mice die in utero due to a lack of vascularization in the placenta. To resolve the contradiction, we cloned the Drosophila VHL homologue (d-VHL) and studied its function. It showed an overall 50% similarity to the human counterpart and 76% similarity in the crucial functional domain: the elongin C binding site. The putative d-VHL protein can bind Drosophila elongin C in vitro. During embryogenesis, d-VHL is expressed in the developing tracheal regions where tube outgrowth no longer occurs. Reduced d-VHL activity (using RNA interference methodology) caused breakage of the main vasculature accompanied by excessive looping of smaller branches, whereas over-expression caused a general lack of vasculature. Importantly, human VHL can induce the same gain-of-function phenotypes. VHL is likely involved in halting cell migration at the end of vascular tube outgrowth. Loss of VHL activity can therefore lead to disruption of major vasculature (as in the mouse embryo), which requires precise cell movement and tube fusion, or ectopic outgrowth from existing secondary vascular branches (as in the adult tumors). Oncogene (2000) 19, 2803 - 2811

Keywords

Tumor Suppressor Proteins, Ubiquitin-Protein Ligases, Molecular Sequence Data, Proteins, Ligases, Trachea, Phenotype, Von Hippel-Lindau Tumor Suppressor Protein, Animals, Humans, Drosophila, Genes, Tumor Suppressor, Amino Acid Sequence, Cloning, Molecular

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
bronze