Powered by OpenAIRE graph

Interaction of endothelin-1 with porcine thyroid cells in culture: a possible autocrine factor regulating iodine metabolism

Authors: T, Tsushima; M, Arai; O, Isozaki; Y, Nozoe; K, Shizume; H, Murakami; N, Emoto; +2 Authors

Interaction of endothelin-1 with porcine thyroid cells in culture: a possible autocrine factor regulating iodine metabolism

Abstract

Abstract Although endothelins were originally discovered as peptides with vasoconstrictor activity, recent studies have indicated a number of endothelin (ET)-induced hormonal functions in various tissues. We have studied the interaction of endothelins with porcine thyroid cells in culture. Specific binding of 125I-labelled ET-1 was demonstrated in porcine thyroid cells. The binding was displaced equally by unlabelled ET-1 and ET-2, but receptor affinity for ET-3 was lower than that for ET-1 and -2. Scatchard analysis of the data revealed a single class of high-affinity ET-1 receptors with a Kd of 0·45 nmol/l and a binding capacity of 2100 sites/cell. SDS-PAGE and autoradiography of 125I-labelled ET-1 cross-linked with thyroid cell membranes demonstrated ET-1 binding sites with an apparent molecular weight of 50 kDa. These results indicated that ET-1 receptors in thyroid cells are type A ET receptors. In association with the presence of ET-1 receptors, porcine thyroid cells responded to ET-1 and ET-2 with an increase in c-fos mRNA expression. Although ET-1 did not affect DNA synthesis stimulated by either EGF or IGF-I, it dose-dependently inhibited TSH-induced iodide uptake and also inhibited iodide uptake stimulated by forskolin and 8-bromo-cAMP. ET-1 had no effect on TSH-stimulated cAMP production. Thus, ET-1 inhibited TSH-induced iodine metabolism by acting at the steps distal to cAMP production. In agreement with a recent report, immunoreactive ET-1 was detected in medium conditioned by porcine thyroid cells. Antibody to ET-1 was found to increase TSH-induced iodide uptake. These results are compatible with the notion that ET-1 negatively regulates TSH-induced iodide uptake in an autocrine manner. Journal of Endocrinology (1994) 142, 463–470

Keywords

Dose-Response Relationship, Drug, Receptors, Endothelin, Swine, Endothelins, Thyroid Gland, 8-Bromo Cyclic Adenosine Monophosphate, Thyrotropin, Binding, Competitive, Stimulation, Chemical, Iodine Radioisotopes, Animals, Cells, Cultured, Iodine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Average