Disrupting Vesicular Trafficking at the Endosome Attenuates Transcriptional Activation by Gcn4
Disrupting Vesicular Trafficking at the Endosome Attenuates Transcriptional Activation by Gcn4
The late endosome (MVB) plays a key role in coordinating vesicular transport of proteins between the Golgi complex, vacuole/lysosome, and plasma membrane. We found that deleting multiple genes involved in vesicle fusion at the MVB (class C/D vps mutations) impairs transcriptional activation by Gcn4, a global regulator of amino acid biosynthetic genes, by decreasing the ability of chromatin-bound Gcn4 to stimulate preinitiation complex assembly at the promoter. The functions of hybrid activators with Gal4 or VP16 activation domains are diminished in class D mutants as well, suggesting a broader defect in activation. Class E vps mutations, which impair protein sorting at the MVB, also decrease activation by Gcn4, provided they elicit rapid proteolysis of MVB cargo proteins in the aberrant late endosome. By contrast, specifically impairing endocytic trafficking from the plasma membrane, or vesicular transport to the vacuole, has a smaller effect on Gcn4 function. Thus, it appears that decreasing cargo proteins in the MVB through impaired delivery or enhanced degradation, and not merely the failure to transport cargo properly to the vacuole or downregulate plasma membrane proteins by endocytosis, is required to attenuate substantially transcriptional activation by Gcn4.
- Institute of Microbiology Switzerland
- National Institutes of Health United States
- Czech Academy of Sciences Czech Republic
- National Institute of Health Pakistan
Transcriptional Activation, Saccharomyces cerevisiae Proteins, Recombinant Fusion Proteins, Vesicular Transport Proteins, Golgi Apparatus, Herpes Simplex Virus Protein Vmw65, Endosomes, Saccharomyces cerevisiae, Membrane Fusion, Models, Biological, Chromatin, DNA-Binding Proteins, Protein Transport, Basic-Leucine Zipper Transcription Factors, Phenotype, Gene Deletion, Signal Transduction, Transcription Factors
Transcriptional Activation, Saccharomyces cerevisiae Proteins, Recombinant Fusion Proteins, Vesicular Transport Proteins, Golgi Apparatus, Herpes Simplex Virus Protein Vmw65, Endosomes, Saccharomyces cerevisiae, Membrane Fusion, Models, Biological, Chromatin, DNA-Binding Proteins, Protein Transport, Basic-Leucine Zipper Transcription Factors, Phenotype, Gene Deletion, Signal Transduction, Transcription Factors
24 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
