RDH1 suppresses adiposity by promoting brown adipose adaptation to fasting and re-feeding
RDH1 suppresses adiposity by promoting brown adipose adaptation to fasting and re-feeding
RDH1 is one of the several enzymes that catalyze the first of the two reactions to convert retinol into all-trans-retinoic acid (atRA). Here, we show that Rdh1-null mice fed a low-fat diet gain more weight as adiposity (17% males, 13% females) than wild-type mice by 20 weeks old, despite neither consuming more calories nor decreasing activity. Glucose intolerance and insulin resistance develop following increased adiposity. Despite the increase in white fat pads, epididymal white adipose does not express Rdh1, nor does muscle. Brown adipose tissue (BAT) and liver express Rdh1 at relatively high levels compared to other tissues. Rdh1 ablation lowered body temperatures during ambient conditions. Given the decreased body temperature, we focused on BAT. A lack of differences in BAT adipogenic gene expression between Rdh1-null mice and wild-type mice, including Pparg, Prdm16, Zfp516 and Zfp521, indicated that the phenotype was not driven by brown adipose hyperplasia. Rather, Rdh1 ablation eliminated the increase in BAT atRA that occurs after re-feeding. This disruption of atRA homeostasis increased fatty acid uptake, but attenuated lipolysis in primary brown adipocytes, resulting in increased lipid content and larger lipid droplets. Rdh1 ablation also decreased mitochondrial proteins, including CYCS and UCP1, the mitochondria oxygen consumption rate, and disrupted the mitochondria membrane potential, further reflecting impaired BAT function, resulting in both BAT and white adipose hypertrophy. RNAseq revealed dysregulation of 424 BAT genes in null mice, which segregated predominantly into differences after fasting vs after re-feeding. Exceptions were Rbp4 and Gbp2b, which increased during both dietary conditions. Rbp4 encodes the serum retinol-binding protein-an insulin desensitizer. Gbp2b encodes a GTPase. Because Gbp2b increased several hundred-fold, we overexpressed it in brown adipocytes. This caused a shift to larger lipid droplets, suggesting that GBP2b affects signaling downstream of the β-adrenergic receptor during basal thermogenesis. Thus, Rdh1-generated atRA in BAT regulates multiple genes that promote BAT adaptation to whole-body energy status, such as fasting and re-feeding. These gene expression changes promote optimum mitochondria function and thermogenesis, limiting adiposity. Attenuation of adiposity and insulin resistance suggests that RDH1 mitigates metabolic syndrome.
- Stanford University United States
- University of California, Berkeley United States
- University of California, Davis United States
- Minnesota State University, Mankato United States
- University of California, San Francisco United States
Male, Biochemistry & Molecular Biology, Physiology, 1.1 Normal biological development and functioning, Adipose, Clinical Sciences, Tretinoin, Mitochondria membrane potential, Inbred C57BL, Oral and gastrointestinal, Mice, Eating, Adipose Tissue, Brown, Underpinning research, Fat-Restricted, Glucose Intolerance, Retinoic acid, Medical biochemistry and metabolomics, Animals, Obesity, Vitamin A, Diet, Fat-Restricted, Metabolic and endocrine, Nutrition, Adiposity, Retinol dehydrogenase, Retinol, Diabetes, Hydroxysteroid Dehydrogenases, Brown, Oncology and carcinogenesis, Thermogenesis, Fasting, Biological Sciences, Lipid Metabolism, Diet, Mice, Inbred C57BL, Lipid metabolism, Adipose Tissue, Biochemistry and cell biology, Female, Biochemistry and Cell Biology, Insulin Resistance, Energy Metabolism, Gene Deletion
Male, Biochemistry & Molecular Biology, Physiology, 1.1 Normal biological development and functioning, Adipose, Clinical Sciences, Tretinoin, Mitochondria membrane potential, Inbred C57BL, Oral and gastrointestinal, Mice, Eating, Adipose Tissue, Brown, Underpinning research, Fat-Restricted, Glucose Intolerance, Retinoic acid, Medical biochemistry and metabolomics, Animals, Obesity, Vitamin A, Diet, Fat-Restricted, Metabolic and endocrine, Nutrition, Adiposity, Retinol dehydrogenase, Retinol, Diabetes, Hydroxysteroid Dehydrogenases, Brown, Oncology and carcinogenesis, Thermogenesis, Fasting, Biological Sciences, Lipid Metabolism, Diet, Mice, Inbred C57BL, Lipid metabolism, Adipose Tissue, Biochemistry and cell biology, Female, Biochemistry and Cell Biology, Insulin Resistance, Energy Metabolism, Gene Deletion
11 Research products, page 1 of 2
- 2003IsAmongTopNSimilarDocuments
- 2003IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2007IsAmongTopNSimilarDocuments
- 2019IsRelatedTo
- 2007IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
