Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The EMBO Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article . 2006 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article
Data sources: UnpayWall
The EMBO Journal
Article . 2006
versions View all 2 versions

HIC1 attenuates Wnt signaling by recruitment of TCF-4 and β-catenin to the nuclear bodies

Authors: Jan Lukas; Bohumil Fafilek; Tomas Valenta; Vladimir Korinek; Lenka Doubravska;

HIC1 attenuates Wnt signaling by recruitment of TCF-4 and β-catenin to the nuclear bodies

Abstract

The hypermethylated in cancer 1 (HIC1) gene is epigenetically inactivated in cancer, and in addition, the haploinsufficiency of HIC1 is linked to the development of human Miller-Dieker syndrome. HIC1 encodes a zinc-finger transcription factor that acts as a transcriptional repressor. Additionally, the HIC1 protein oligomerizes via the N-terminal BTB/POZ domain and forms discrete nuclear structures known as HIC1 bodies. Here, we provide evidence that HIC1 antagonizes the TCF/beta-catenin-mediated transcription in Wnt-stimulated cells. This appears to be due to the ability of HIC1 to associate with TCF-4 and to recruit TCF-4 and beta-catenin to the HIC1 bodies. As a result of the recruitment, both proteins are prevented from association with the TCF-binding elements of the Wnt-responsive genes. These data indicate that the intracellular amounts of HIC1 protein can modulate the level of the transcriptional stimulation of the genes regulated by canonical Wnt/beta-catenin signaling.

Related Organizations
Keywords

Cell Nucleus, Transcription, Genetic, Kruppel-Like Transcription Factors, DNA-Binding Proteins, Wnt Proteins, Cytoskeletal Proteins, Mice, Axin Protein, Gene Expression Regulation, Culture Media, Conditioned, Animals, Humans, RNA Interference, Promoter Regions, Genetic, TCF Transcription Factors, Transcription Factor 7-Like 2 Protein, beta Catenin, Protein Binding, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 10%
gold