Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuropsychopharmacol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuropsychopharmacology
Article . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

The Transcription Factor NGFI-B (Nur77) and Retinoids Play a Critical Role in Acute Neuroleptic-Induced Extrapyramidal Effect and Striatal Neuropeptide Gene Expression

Authors: Isabelle, Ethier; Geneviève, Beaudry; Michel, St-Hilaire; Jeff, Milbrandt; Claude, Rouillard; Daniel, Lévesque;

The Transcription Factor NGFI-B (Nur77) and Retinoids Play a Critical Role in Acute Neuroleptic-Induced Extrapyramidal Effect and Striatal Neuropeptide Gene Expression

Abstract

Despite extensive investigation, the cellular mechanisms responsible for neuroleptic actions remain elusive. We have previously shown that neuroleptics modulated the expression of some members of the ligand-activated transcription factors (nuclear receptors) including the nerve-growth factor inducible gene B (NGFI-B or Nur77) and retinoid X receptor (RXR) isoforms. Using genetic and pharmacological approaches, we investigated the role of NGFI-B and retinoids in acute behavioral and biochemical responses to dopamine antagonists. NGFI-B knockout (KO) mice display a profound alteration of haloperidol-induced catalepsy and striatal neuropeptide gene expression. Haloperidol-induced increase of striatal enkephalin mRNA is totally abolished in NGFI-B KO mice whereas the increase of neurotensin mRNA expression is reduced by 50%. Interestingly, catalepsy induced by raclopride, a specific dopamine D(2)/D(3) antagonist is completely abolished in NGFI-B-deficient mice whereas the cataleptic response to SCH 23390, a dopamine D(1) agonist, is preserved. Accordingly, the effects of haloperidol on striatal c-fos, Nor-1, and dynorphin mRNA expression are also preserved in NGFI-B-deficient mice. The cataleptic response and the increase of enkephalin mRNA expression induced by haloperidol can also be suppressed by administration of retinoid ligands 9-cis retinoic acid and docosahexaenoic acid. In addition, we demonstrate that haloperidol enhances colocalization of NGFI-B and RXRgamma1 isoform mRNAs, suggesting that both NGFI-B and a RXR isoform are highly coexpressed after haloperidol administration. Our data demonstrate, for the first time, that NGFI-B and retinoids are actively involved in the molecular cascade induced by neuroleptic drugs.

Related Organizations
Keywords

Catalepsy, Binding Sites, Behavior, Animal, Docosahexaenoic Acids, Dose-Response Relationship, Drug, Antineoplastic Agents, Corpus Striatum, DNA-Binding Proteins, Mice, Inbred C57BL, Drug Combinations, Mice, Basal Ganglia Diseases, Gene Expression Regulation, Animals, Autoradiography, Haloperidol, Drug Interactions, Alitretinoin, In Situ Hybridization, Antipsychotic Agents

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Average
Top 10%
Top 10%
bronze