<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Thin , a Trim32 ortholog, is essential for myofibril stability and is required for the integrity of the costamere in Drosophila
Thin , a Trim32 ortholog, is essential for myofibril stability and is required for the integrity of the costamere in Drosophila
Myofibril stability is required for normal muscle function and maintenance. Mutations that disrupt myofibril stability result in individuals who develop progressive muscle wasting, or muscular dystrophy, and premature mortality. Here we present our investigations of the Drosophila l(2)thin [ l(2)tn ] mutant. The “thin” phenotype exhibits features of the human muscular disease phenotype in that tn mutant larvae show progressive muscular degeneration. Loss-of-function and rescue experiments determined that l(2)tn is allelic to the tn locus [previously annotated as both CG15105 and another b-box affiliate ( abba )]. tn encodes a TRIM (tripartite motif) containing protein highly expressed in skeletal muscle and is orthologous to the human limb-girdle muscular dystrophy type 2H disease gene Trim32. Thin protein is localized at the Z-disk in muscle, but l(2)tn mutants showed no genetic interaction with mutants affecting the Z-line–associated protein muscle LIM protein 84B. l(2)tn , along with loss-of-function mutants generated for tn , showed no relative mislocalization of the Z-disk proteins α-Actinin and muscle LIM protein 84B. In contrast, tn mutants had significant disorganization of the costameric orthologs β-integrin, Spectrin, Talin, and Vinculin, and we present the initial description for the costamere, a key muscle stability complex, in Drosophila. Our studies demonstrate that myofibrils progressively unbundle in flies that lack Thin function through progressive costamere breakdown. Due to the high conservation of these structures in animals, we demonstrate a previously unknown role for TRIM32 proteins in myofibril stability.
- University of Utah United States
- University of New Mexico United States
- Huntsman Cancer Institute United States
- University of Missouri–Kansas City United States
- University of Missouri United States
Myofibrils, Animals, Humans, Muscle Proteins, Drosophila, Alleles
Myofibrils, Animals, Humans, Muscle Proteins, Drosophila, Alleles
50 Research products, page 1 of 5
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
