Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Genetics a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Genetics and Metabolism
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Identification of two novel mutations in the murine Nsdhl sterol dehydrogenase gene and development of a functional complementation assay in yeast

Authors: Jo Peters; Gail E. Herman; Marsha E Lucas; David Cunningham; Qi Ma; Bradley K Elmore; Martin Bard; +1 Authors

Identification of two novel mutations in the murine Nsdhl sterol dehydrogenase gene and development of a functional complementation assay in yeast

Abstract

Nsdhl is a 3beta-hydroxysterol dehydrogenase that is involved in the removal of C-4 methyl groups in the cholesterol biosynthetic pathway. Mutations in this gene are associated with the X-linked male lethal mouse mutations bare patches (Bpa) and striated (Str) and human CHILD syndrome. We have now detected the missense mutations V53D and A94T in conserved amino acids in two additional Bpa alleles. The latter alters the same amino acid as a missense mutation found in two unrelated CHILD patients, strongly suggesting that differences in the phenotype between Bpa mice and females with CHILD syndrome are unlikely to be explained by different types or sites of mutations. We have also demonstrated that the mouse NSDHL protein can rescue the lethality of erg26 deficient cells of Saccharomyces cerevisiae that lack the yeast ortholog, substantiating the role of NSDHL as a C-3 sterol dehydrogenase. Using this in vivo assay, we have demonstrated that two Str alleles function as hypomorphs, while three Bpa and one Str allele provide no complementation or rescue.

Keywords

Male, 3-Hydroxysteroid Dehydrogenases, Ichthyosis, X-Linked, X Chromosome, Genetic Complementation Test, Hydroxysteroid Dehydrogenases, Saccharomyces cerevisiae, Mice, Cholesterol, Mutation, Animals, Abnormalities, Multiple, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Top 10%