Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Intervent...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Interventional Cardiology
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Interventional Cardiology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

Transcatheter Closure of Perimembranous Ventricular Septal Defect with Aneurysm: Radiologic Characteristic and Interventional Strategy

Authors: Weibing Guo; Yifan Li; Jinjin Yu; Junjie Li; Ling Sun; Jijun Shi; Shushui Wang; +2 Authors

Transcatheter Closure of Perimembranous Ventricular Septal Defect with Aneurysm: Radiologic Characteristic and Interventional Strategy

Abstract

Objectives. We aimed to explore the radiologic characteristics and interventional strategies for perimembranous ventricular septal defect (pmVSD) with aneurysm. Methods. 257 patients who underwent transcatheter closure of pmVSD with aneurysm were included in our study. We retrospectively reviewed the left ventricular opening of the aneurysm (a), diameter of the midsegment of the aneurysm (b), and diameter of the right ventricular opening of the aneurysm (c). If there were multiple defects within the aneurysm, the largest defect was denoted as c1 and so forth. We developed a novel VSD classification method in which pmVSD with aneurysm was classified into three types (A, B, and C). When a >b ≥ c, it was classified as type A, when b > a ≥ c, it was type B, and when c > a ≥ b, it was type C; c/c1 described the relationship among defects. Results. All of the 257 cases of pmVSD with aneurysm were defined using left ventriculography: type A, 60, type B, 58, and type C, 139. Transcatheter closure was attempted in 244 patients and succeeded in 227 cases (success rate was 93.0%; 227/244). Forty symmetric VSD occluders and 13 asymmetric VSD occluders were used for type A aneurysm occlusion; 31 symmetric VSD occluders, 19 asymmetric VSD occluders, and one Amplatzer duct occluder II (ADOII) were used for type B; 59 VSD symmetric occluders, 59 asymmetric VSD occluders, three eccentric VSD occluders, and two ADOII were used for type C. Within 24 hours after procedure, 2.2% patients had postprocedural residual shunt, and 2.2% experienced malignant arrhythmia (including type II second-degree AVB, cAVB, and CLBBB). Two hundred and twelve patients completed follow-up (93%, 212/227). No new severe complications were reported during follow-up, except in one patient who underwent surgery (removal of the device, VSD repair, and tricuspid valvuloplasty) due to severe postprocedural tricuspid regurgitation. Conclusions. It is safe and effective to apply this method for the classification of pmVSD with aneurysm and its interventional strategy.

Related Organizations
Keywords

Heart Septal Defects, Ventricular, Male, Cardiac Catheterization, China, Septal Occluder Device, Infant, Arrhythmias, Cardiac, Prosthesis Design, Postoperative Complications, Treatment Outcome, RC666-701, Child, Preschool, Diseases of the circulatory (Cardiovascular) system, Humans, Female, Cardiac Surgical Procedures, Heart Aneurysm, Child, Radionuclide Ventriculography, Research Article, Retrospective Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
gold