Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Accelerated re-epithelialization inDpr2-deficient mice is associated with enhanced response to TGFβ signaling

Authors: Fanwei, Meng; Xuan, Cheng; Leilei, Yang; Ning, Hou; Xiao, Yang; Anming, Meng;

Accelerated re-epithelialization inDpr2-deficient mice is associated with enhanced response to TGFβ signaling

Abstract

Members of the Dapper (Dpr)/Dact protein family are involved in the regulation of distinct signaling pathways, including TGFβ/Nodal, canonical and noncanonical Wnt pathways. Three Dpr genes, Dpr1, Dpr2 and Dpr3, are expressed in mouse embryos and in many adult tissues; however, their in vivo functions have not been reported. In this study, we generated Dpr2-deficient mice using a gene-knockout approach. Homozygous Dpr2 knockout (Dpr2–/–) embryos developed normally and postnatal Dpr2–/– mice grew to adulthood without obvious morphological or behavioral defects. We found that Dpr2 was expressed highly in epidermal keratinocytes and in hair follicles of adult mice, and that Dpr2 deficiency resulted in accelerated re-epithelialization during cutaneous wound healing. Furthermore, we demonstrated that loss of Dpr2 function enhanced the responses of keratinocytes to TGFβ stimulation, and that TGFβ signals promoted adhesion to fibronectin and migration of keratinocytes, by regulating the expression of specific integrin genes. Thus, Dpr2 plays an inhibitory role in the re-epithelialization of adult skin wounds by attenuating TGFβ signaling.

Related Organizations
Keywords

Keratinocytes, Mice, Knockout, Wound Healing, Gene Expression Profiling, Integrin beta1, Intracellular Signaling Peptides and Proteins, Embryonic Development, Integrin alphaV, Epithelium, Up-Regulation, Mice, Cell Movement, Transforming Growth Factor beta, Gene Targeting, Animals, Carrier Proteins, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
bronze