Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical Pharmaco...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical Pharmacology
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Functional analysis of activation and repression domains of the rainbow trout aryl hydrocarbon receptor nuclear translocator (rtARNT) protein isoforms

Authors: B, Necela; R S, Pollenz;

Functional analysis of activation and repression domains of the rainbow trout aryl hydrocarbon receptor nuclear translocator (rtARNT) protein isoforms

Abstract

The aryl hydrocarbon receptor nuclear translocator (ARNT) protein is involved in many signaling pathways. Rainbow trout express isoforms of ARNT protein that are divergent in their C-terminal domains due to alternative RNA splicing. Rainbow trout ARNT(b) (rtARNT(b)) contains a C-terminal domain rich in glutamine and asparagine (QN), whereas the C-terminal domain of rtARNT(a) is rich in proline, serine, and threonine (PST). rtARNT(b) functions positively in AH receptor-mediated signaling, whereas rtARNT(a) functions negatively. Studies were performed to understand how changes in the C-terminal domains of the two rtARNT isoforms affect function. Deletion of the QN-rich C-terminal domain of rtARNT(b) did not affect function in aryl hydrocarbon receptor (AHR)-mediated signaling, whereas deletion of the PST-rich domain of rtARNT(a) restored function. Expression of the PST-rich domain on truncated rtARNT(b) or mouse ARNT (mARNT) reduced function of this protein by 50-80%. Gel shift assays revealed that the PST-rich domain affected AHR-mediated signaling by inhibiting DNA binding of the AHR*ARNT heterodimer. Gal4 transactivation assays revealed a potent transactivation domain in the QN-rich domain of rtARNT(b). In contrast, Gal4 proteins containing the PST-rich domain of rtARNT(a) did not transactivate because the proteins did not bind to DNA. Secondary structure analysis of the PST-rich domain revealed hydrophilic and hydrophobic regions. Truncation of the hydrophobic domain that spanned the final 20-40 amino acids of the rtARNT(a) restored function to the protein, suggesting that repressor function was related to protein misfolding or masking of the basic DNA binding domain. Functional diversity within the C-terminal domain is consistent with other negatively acting transcription factors and illustrates a common biological theme.

Related Organizations
Keywords

Threonine, Transcriptional Activation, Proline, Aryl Hydrocarbon Receptor Nuclear Translocator, Protein Structure, Tertiary, Xenobiotics, DNA-Binding Proteins, Receptors, Aryl Hydrocarbon, Oncorhynchus mykiss, Serine, Animals, Protein Isoforms, Gene Deletion, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Top 10%