Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 1997 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 1997
versions View all 2 versions

Formation of the Drosophila Ovarian Ring Canal Inner Rim Depends on cheerio

Authors: D N, Robinson; T A, Smith-Leiker; N S, Sokol; A M, Hudson; L, Cooley;

Formation of the Drosophila Ovarian Ring Canal Inner Rim Depends on cheerio

Abstract

In Drosophila oogenesis, the development of a mature oocyte depends on having properly developed ring canals that allow cytoplasm transport from the nurse cells to the oocyte. Ring canal assembly is a step-wise process that transforms an arrested cleavage furrow into a stable intercellular bridge by the addition of several proteins. Here we describe a new gene we named cheerio that provides a critical function for ring canal assembly. Mutants in cheerio fail to localize ring canal inner rim proteins including filamentous actin, the ring canal-associated products from the hu-li tai shao (hts) gene, and kelch. Since hts and kelch are present but unlocalized in cheerio mutant cells, cheerio is likely to function upstream from each of them. Examination of mutants in cheerio places it in the pathway of ring canal assembly between cleavage furrow arrest and localization of hts and actin filaments. Furthermore, this mutant reveals that the inner rim cytoskeleton is required for expansion of the ring canal opening and for plasma membrane stabilization.

Related Organizations
Keywords

Cell Membrane, Microfilament Proteins, Ovary, Chromosome Mapping, Gene Expression Regulation, Developmental, Genes, Insect, Cell Communication, Actins, Drosophila melanogaster, Intercellular Junctions, Oocytes, Animals, Drosophila Proteins, Insect Proteins, Calmodulin-Binding Proteins, Female, Carrier Proteins, Infertility, Female, Alleles, Cytoskeleton

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
hybrid