Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 1990 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
Molecular and Cellular Biology
Article . 1990 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

Mutations in Saccharomyces cerevisiae which confer resistance to several amino acid analogs.

Authors: J H, McCusker; J E, Haber;

Mutations in Saccharomyces cerevisiae which confer resistance to several amino acid analogs.

Abstract

Four new complementation groups of mutations which confer resistance to several amino acid analogs in Saccharomyces cerevisiae are described. These mutants were isolated on medium containing urea as the nitrogen source, in contrast to previous studies that had used medium containing proline. All four resistance to amino acid analog (raa) complementation groups appear to confer resistance by reducing amino acid analog and amino acid uptake. In some genetic backgrounds, raa leu2 and raa thr4 double mutants are inviable, even on rich medium. The raa4 mutation may affect multiple amino acid transport systems, since raa4 mutants are unable to use proline as a nitrogen source. raa4 is, however, unlinked to a previously described amino acid analog resistance and proline uptake mutant, aap1, or to the general amino acid permease mutant gap1. Both raa4 and gap1 prevent uptake of [3H]leucine in liquid cultures. The raa1, raa2, and raa3 mutants affect only a subset of the amino acid analogs and amino acids affected by raa4. The phenotypes of raa1, -2, and -3 mutants are readily observed on agar plates but are not seen in uptake and incorporation of amino acids measured in liquid media.

Related Organizations
Keywords

Genotype, Genetic Complementation Test, Biological Transport, Drug Resistance, Microbial, Saccharomyces cerevisiae, Culture Media, Kinetics, Phenotype, Leucine, Mutation, Amino Acids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Top 10%
Average
bronze