Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Cell Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Cell Research
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Ribosome biogenesis: of knobs and RNA processing

Authors: Sander Granneman; Susan J. Baserga;

Ribosome biogenesis: of knobs and RNA processing

Abstract

The synthesis of ribosomes in eukaryotes involves processing of pre-ribosomal RNA (pre-rRNA) and sequential assembly of a large number of ribosomal proteins on the rRNAs. Although we have gained tremendous insights into the processing of pre-rRNA intermediates in the last three decades, little was known about the dynamic nature of ribosome biogenesis. Only recently the development of efficient affinity-purification procedures and mass-spectrometry techniques has allowed the isolation of large pre-ribosomal complexes, which led to the identification of several ribosome assembly intermediates and a large number of novel ribosome assembly factors. In this mini-review, we summarize some of the discoveries that have been made in the field of ribosome biogenesis in the past 30 years and highlight some key aspects about what remains to be learned.

Related Organizations
Keywords

Ribosomal Proteins, Macromolecular Substances, Yeasts, RNA Precursors, Nuclear Proteins, Ribosomes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    208
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
208
Top 10%
Top 10%
Top 1%