Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1994 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Isolation and characterization of MRF-1, a brain-derived DNA-binding protein with a capacity to regulate expression of myelin basic protein gene.

Authors: N S, Haque; A M, Buchberg; K, Khalili;

Isolation and characterization of MRF-1, a brain-derived DNA-binding protein with a capacity to regulate expression of myelin basic protein gene.

Abstract

The 5'-flanking region of the myelin basic protein (MBP) contains several regulatory elements that differentially contribute to the cell type-specific transcription of MBP in cells derived from the central nervous system. The distal regulatory element, termed MB3, had previously been shown to have characteristics of a cell type-specific enhancer element and bind to multiple brain-derived nuclear proteins in vitro. We now report the isolation of a recombinant cDNA clone, named myelin regulatory factor-1 (MRF-1) from a mouse brain expression library that encodes a novel protein which interacts with the MB3 domain. Computer-assisted analysis of MRF-1 revealed substantial sequence homology in the central and the COOH-terminal regions of this protein with the previously identified splicing factor SC35. Cotransfection studies indicated that MRF-1 increases transcription of the MBP promoter in glial cells and that this activation requires an intact MRF-1-binding site within the MB3 region. MRF-1 cDNA hybridized to three RNA species 1.8, 2.5, and 3.0 kilobases which are expressed in all tissues analyzed. The gene encoding MRF-1 is located on the distal half of mouse chromosome 11 in a region where the human homolog would be predicted to reside on human chromosome 17.

Related Organizations
Keywords

DNA, Complementary, Base Sequence, Serine-Arginine Splicing Factors, Transcription, Genetic, Molecular Sequence Data, Brain, Chromosome Mapping, Nuclear Proteins, Myelin Basic Protein, Nerve Tissue Proteins, DNA-Binding Proteins, Mice, Gene Expression Regulation, Ribonucleoproteins, Animals, Humans, Amino Acid Sequence, RNA, Messenger, Polymorphism, Restriction Fragment Length, Chromosomes, Human, Pair 17

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
gold