Powered by OpenAIRE graph

9-cis-Retinoids: Biosynthesis of 9-cis-Retinoic Acid

Authors: J, Paik; S, Vogel; R, Piantedosi; A, Sykes; W S, Blaner; K, Swisshelm;

9-cis-Retinoids: Biosynthesis of 9-cis-Retinoic Acid

Abstract

Retinoids function through conformational alterations of ligand-dependent nuclear transcription factors, the retinoic acid receptors, and retinoid X receptors. 9-cis-Retinoic acid is a known biological ligand for retinoid X receptors, but its synthesis pathway in vivo is largely unknown. Recently, we identified a cis-retinol dehydrogenase (cRDH) that oxidizes 9-cis-retinol to 9-cis-retinal. Since both the expression of cRDH mRNA and its substrate are found in liver, we studied 9-cis-retinol metabolism and 9-cis-retinoic acid biosynthesis in two hepatic-derived cell types, Hep G2 hepatoma cells and HSC-T6 stellate cells. Both cell lines accumulate similar amounts of 9-cis-retinol provided in the medium. However, Hep G2 cells preferentially incorporate all-trans-retinol when equimolar concentrations of all-trans- and 9-cis-retinol were provided. In contrast, HSC-T6 cells did not exhibit a preference between all-trans- and 9-cis-retinol under the same conditions. Esterification of 9-cis-retinol occurred in both cell types, likely by acyl-CoA:retinol acyltransferase and lecithin:retinol acyltransferase. In vitro enzyme assays demonstrated that both cell types can hydrolyze 9-cis-retinyl esters via retinyl ester hydrolase(s). In Hep G2 cells, 9-cis-retinoic acid synthesis was strongly inhibited by high concentrations of 9-cis-retinol, which may explain the low levels of 9-cis-retinol in liver of mice. Cell homogenates of Hep G2 can convert all-trans-retinol to 9-cis-retinal, suggesting that the free form of all-trans-retinol may be used as a source for 9-cis-retinol and, thus, 9-cis-retinoic acid synthesis. Our studies provide the basis for identification of additional pathways for the generation of 9-cis-retinoic acid in specialized tissues.

Related Organizations
Keywords

Base Sequence, Tretinoin, Cell Line, Alcohol Oxidoreductases, Mice, Liver, Transduction, Genetic, Animals, Humans, Alitretinoin, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Average
Top 10%
Top 10%