Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
Cancer Research
Article . 2008 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2008
versions View all 2 versions

BH3 Mimetic ABT-737 Potentiates TRAIL-Mediated Apoptotic Signaling by Unsequestering Bim and Bak in Human Pancreatic Cancer Cells

Authors: Shengbing, Huang; Frank A, Sinicrope;

BH3 Mimetic ABT-737 Potentiates TRAIL-Mediated Apoptotic Signaling by Unsequestering Bim and Bak in Human Pancreatic Cancer Cells

Abstract

Abstract Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) has been shown to induce mitochondrial apoptotic signaling that can be negatively regulated by prosurvival Bcl-2 proteins. ABT-737 is a small-molecule BH3 mimetic that binds to and antagonizes Bcl-2/Bcl-xL but not Mcl-1. We show that ABT-737 can synergistically enhance TRAIL-mediated cytotoxicity in human pancreatic cancer cell lines. ABT-737 was shown to enhance TRAIL-induced apoptosis as shown by DNA fragmentation, activation of caspase-8 and Bid, and cleavage of caspase-3 and poly(ADP-ribose) polymerase. A Bax conformational change induced by TRAIL was enhanced by ABT-737. ABT-737 disrupted the interaction of Bak with Bcl-xL in both cell lines. Furthermore, ABT-737 untethered the proapoptotic BH3-only protein Bim from its sequestration by Bcl-xL or Bcl-2. Bim small hairpin RNA (shRNA) was shown to attenuate caspase-3 cleavage and to reduce the cytotoxic effects of TRAIL plus ABT-737 compared with shRNA control cells. Finally, Mcl-1 shRNA potentiated caspase-3 cleavage by ABT-737 and enhanced its cytotoxic effects. Taken together, ABT-737 augments TRAIL-induced cell killing by unsequestering Bim and Bak and enhancing a Bax conformational change induced by TRAIL. These findings suggest a novel strategy to enhance cross-talk between the extrinsic and intrinsic apoptotic pathways to improve therapeutic efficacy against pancreatic cancer. [Cancer Res 2008;68(8):2944–51]

Related Organizations
Keywords

Sulfonamides, Bcl-2-Like Protein 11, Cell Survival, Biphenyl Compounds, Membrane Proteins, Antineoplastic Agents, Apoptosis, DNA Fragmentation, DNA, Neoplasm, Kidney, Piperazines, Cell Line, Nitrophenols, Pancreatic Neoplasms, TNF-Related Apoptosis-Inducing Ligand, Proto-Oncogene Proteins c-bcl-2, Cell Line, Tumor, Proto-Oncogene Proteins, Humans, Apoptosis Regulatory Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    115
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
115
Top 10%
Top 10%
Top 1%
bronze
Related to Research communities
Cancer Research