Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao APOPTOSISarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
APOPTOSIS
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
APOPTOSIS
Article . 2008
versions View all 2 versions

The action of Pdcd4 may be cell type specific: evidence that reduction of dUTPase levels might contribute to its tumor suppressor activity in Bon-1 cells

Authors: Brigitte, Lankat-Buttgereit; Barbara, Lenschen; Harald, Schmidt; Rüdiger, Göke;

The action of Pdcd4 may be cell type specific: evidence that reduction of dUTPase levels might contribute to its tumor suppressor activity in Bon-1 cells

Abstract

Pdcd4 (programmed cell death protein 4) was identified as a gene up-regulated during apoptosis and, additionally, seems to have a function as a tumor suppressor. However, there are conflicting data concerning its role in programmed cell death and most results for its action as an inhibitor for neoplastic transformation are derived from experiments with epidermal cells. Therefore, we were interested to investigate if the action of Pdcd4 might be cell type specific. For that purpose we examined the expression of Pdcd4 and several other proteins in various tumor cell lines. We could not find any correlation of Pdcd4 levels and expression of proteins associated with cell cycle and/or apoptosis in different cell lines. Furthermore, we stably transfected two cell lines (Bon-1 and HCT116) to over-express Pdcd4 and analyzed protein expression. Although we found several regulated proteins none of these proteins were affected in both cell lines in the same manner. For instance, dUTPase expression was reduced in Bon-1 cells but not changed in HCT116 cells. This regulation might be important for the sensitivity of cells to anti-cancer drugs like inhibitors of thymidilate synthase. Therefore, we conclude that the function of Pdcd4 might be cell type specific. A role for Pdcd4 in apoptosis or as a tumor suppressor might be limited to certain cell types.

Keywords

Antimetabolites, Antineoplastic, RNA-Binding Proteins, Apoptosis, Transfection, Cell Line, Tumor, Humans, Fluorouracil, Pyrophosphatases, Apoptosis Regulatory Proteins, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Top 10%
Top 10%